SURVEY ARTICLE

Almost nonnegative curvature operator and cohomology rings

  • Martin HERRMANN , 1
Expand
  • 1. Fakultät für Mathematik, Karlsruher Institut für Technologie, Kaiserstraβe 89–93, 76133 Karlsruhe, Germany
  • 2. Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

Received date: 18 May 2016

Accepted date: 22 Jun 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give a survey of results on the construction of and obstructions to metrics of almost nonnegative curvature operator on closed manifolds and results on the cohomology rings of closed, simply-connected manifolds with a lower curvature and upper diameter bound. The latter is motivated by a question of Grove whether these condition imply finiteness of rational homotopy types. This question has answers by F. Fang–X. Rong, B. Totaro and recently A. Dessai and the present author.

Cite this article

Martin HERRMANN . Almost nonnegative curvature operator and cohomology rings[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1259 -1274 . DOI: 10.1007/s11464-016-0569-0

1
Aloff S, Wallach N R. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull Amer Math Soc, 1975, 81: 93–97

DOI

2
Bérard P H.From vanishing theorems to estimating theorems: the Bochner technique revisited. Bull Amer Math Soc (NS), 1988, 19(2): 371–406

DOI

3
Berger M. Sur les groupes d’holonomie homog`ene des variétés àconnexion affine et des variétés riemanniennes. Bull Soc Math France, 1955, 83: 279–330

4
Böhm C, Wilking B. Manifolds with positive curvature operators are space forms. Ann of Math (2), 2008, 167(3): 1079–1097

5
Bourguignon J-P, Karcher H. Curvature operators: pinching estimates and geometric examples. Ann Sci Éc Norm Supér (4), 1978, 11(1): 71–92

6
Cao H D, Chow B. Compact Kähler manifolds with nonnegative curvature operator. Invent Math, 1986, 83(3): 553–556

DOI

7
Cheeger J, Gromoll D. On the structure of complete manifolds of nonnegative curvature. Ann of Math (2), 1972, 96: 413–443

8
Chow B, Lu P, Ni L. Hamilton’s Ricci flow. Graduate Studies in Mathematics, Vol 77. Providence/New York: Amer Math Soc/Science Press, 2006

9
Dessai A. Nonnegative curvature, low cohomogeneity and complex cohomology. Münster J Math (to appear), http://arxiv.org/abs/1503.08290

10
Fang, F Q, Rong X C. Curvature, diameter, homotopy groups, and cohomology rings. Duke Math J, 2001, 107(1): 135–158

DOI

11
Fukaya K, Yamaguchi T. The fundamental groups of almost non-negatively curved manifolds. Ann of Math (2), 1992, 136(2): 253–333

12
Gallot S, Meyer D. Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne. J Math Pures Appl (9), 1975, 54(3): 259–284

13
Gromov M. Almost flat manifolds. J Differential Geom, 1978, 13(2): 231–241

14
Gromov M. Curvature, diameter and Betti numbers. Comment Math Helv, 1981, 56(2): 179–195

DOI

15
Grove K. Critical point theory for distance functions. In: Differential Geometry: Riemannian geometry (Los Angeles, CA, 1990). Proc Sympos Pure Math, Vol 54. Providence: Amer Math Soc, 1993, 357–385

DOI

16
Grove K, Ziller W. Curvature and symmetry of Milnor spheres. Ann of Math (2), 2000, 152(1): 331–367

17
Hamilton R S. Four-manifolds with positive curvature operator. J Differential Geom, 1986, 24(2): 153–179

18
Herrmann M. Classification and characterization of rationally elliptic manifolds in low dimensions. Preprint, 2014, arXiv: 1409.8036

19
Herrmann M. Homogeneous spaces, curvature and cohomology. Differential Geom Appl (to appear)

DOI

20
Herrmann M, Sebastian D, Tuschmann W. Manifolds with almost nonnegative curvature operator and principal bundles. Ann Global Anal Geom, 2013, 44(4): 391–399

DOI

21
Hoelscher C A. On the homology of low-dimensional cohomogeneity one manifolds. Transform Groups, 2010, 15(1): 115–133

DOI

22
Huang H M. Some remarks on the pinching problems. Bull Inst Math Acad Sin, 1981, 9(2): 321–340

23
Kapovitch V, Petrunin A, Tuschmann W. Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces. Ann of Math (2), 2010, 171(1): 343–373

24
Klaus S. Einfach-zusammenhängende Kompakte Homogene Räume bis zur Dimension Neun. Diploma Thesis. Johannes Gutenberg Universität Mainz, 1988

25
Li P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann Sci Éc Norm Supér, 1980, 13(4): 451–468

26
Lott J. Collapsing with a lower bound on the curvature operator. Adv Math, 2014, 256: 291–317

DOI

27
Mercuri F, Noronha M H. On the topology of complete Riemannian manifolds with nonnegative curvature operator. Rend Sem Fac Sci Univ Cagliari, 1993, 63(2): 149–171

28
Micallef M J, Moore J D. Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann of Math (2), 1988, 127(1): 199–227

29
Mori S. Projective manifolds with ample tangent bundles. Ann of Math (2), 1979, 110(3): 593–606

30
Noronha M H. A splitting theorem for complete manifolds with nonnegative curvature operator. Proc Amer Math Soc, 1989, 105(4): 979–985

DOI

31
Petersen P. Riemannian Geometry. 2nd ed. Grad. Texts in Math, Vol 171. New York: Springer, 2006

32
Petrunin A, Tuschmann W. Diffeomorphism finiteness, positive pinching, and second homotopy. Geom Funct Anal, 1999, 9(4): 736–774

DOI

33
Püttmann T. Optimal pinching constants of odd dimensional homogeneous spaces. Invent Math, 1999, 138(3): 631–684

DOI

34
Schwachhöfer L J, Tuschmann W. Curvature and cohomogeneity one. Max Planck Institute for Mathematics in the Sciences, MIS-Preprint 62/2001, 2001, http://www.mis.mpg.de/de/publications/preprints/2001/prepr2001-62.html

35
Schwachhöfer L J, Tuschmann W. Metrics of positive Ricci curvature on quotient spaces. Math Ann, 2004, 330(1): 59–91

DOI

36
Sebastian D. Konstruktionen von Mannigfaltigkeiten mit fast nichtnegativem Krümmungsoperator. Dissertation. Karlsruhe Institute of Technology, 2011

37
Siu Y T, Yau S T. Compact Kähler manifolds of positive bisectional curvature. Invent Math, 1980, 59(2): 189–204

DOI

38
Stewart T E. Lifting group actions in fibre bundles. Ann of Math (2), 1961, 74: 192–198

39
Strake M. A splitting theorem for open nonnegatively curved manifolds. Manuscripta Math, 1988, 61(3): 315–325

DOI

40
Tachibana S. A theorem of Riemannian manifolds of positive curvature operator. Proc Japan Acad, 1974, 50: 301–302

DOI

41
Totaro B. Curvature, diameter, and quotient manifolds. Math Res Lett, 2003, 10(2-3): 191–203

DOI

42
Tuschmann W. Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness. Math Ann, 2002, 322(2): 413–420

DOI

43
Tuschmann W. Collapsing and almost nonnegative curvature. In: Global Differential Geometry. Springer Proc Math, Vol 17. Heidelberg: Springer, 2012, 93–106

DOI

44
Wilking B. On fundamental groups of manifolds of nonnegative curvature. Differential Geom Appl, 2000, 13(2): 129–165

DOI

45
Yim J-W. Space of souls in a complete open manifold of nonnegative curvature. J Differential Geom, 1990, 32(2): 429–455

Outlines

/