SURVEY ARTICLE

Isoperimetry of nilpotent groups

  • Moritz GRUBER
Expand
  • Karlsruhe Institute of Technology, Karlsruhe, Germany

Received date: 05 Feb 2016

Accepted date: 31 Jul 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This survey gives an overview of the isoperimetric properties of nilpotent groups and Lie groups. It discusses results for Dehn functions and filling functions as well as the techniques used to retrieve them. The content reaches from long standing results up to the most recent development.

Cite this article

Moritz GRUBER . Isoperimetry of nilpotent groups[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1239 -1258 . DOI: 10.1007/s11464-016-0577-0

1
Alonso J M, Wang X, Pride S J. Higher-dimensional isoperimetric (or Dehn) functions of groups. J Group Theory, 1999, 2(1): 81–112

2
Bridson M R. On the geometry of normal forms in discrete groups. Proc Lond Math Soc (3), 1993, 67(3): 596–616

3
Burillo J. Lower bounds of isoperimetric functions for nilpotent groups. In: Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994). DIMACS Ser Discrete Math Theoret Comput Sci, Vol 25. Providence: Amer Math Soc, 1996, 1–8

4
Burillo J, Taback J. Equivalence of geometric and combinatorial Dehn functions. New York J Math, 2002, 8: 169–179 (electronic)

5
Epstein D B A, Cannon J W, Holt D F, Levy S V F, Paterson M S, Thurston W P. Word Processing in Groups. Boston: Jones and Bartlett Publishers, 1992

6
Federer H, Fleming W H. Normal and integral currents. Ann of Math (2), 1960, 72: 458–520

7
Gersten S M. Isoperimetric and isodiametric functions of finite presentations. In: Geometric Group Theory, Vol 1 (Sussex, 1991). London Math Soc Lecture Note Ser, Vol 181. Cambridge: Cambridge Univ Press, 1993, 79–96

DOI

8
Gromov M. Filling Riemannian manifolds. J Differential Geom, 1983, 18(1): 1–147

9
Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Progr Math, Vol 152. Boston: Birkhäuser, 1999

10
Gruber M. Large Scale Geometry of Stratified Nilpotent Lie Groups (in preparation)

11
Korányi A, Ricci F. A classification-free construction of rank-one symmetric spaces. Bull Kerala Math Assoc, 2005, (Special Issue): 73–88 (2007)

12
Leuzinger E. Optimal higher-dimensional Dehn functions for some CAT(0) lattices. Groups Geom Dyn, 2014, 8(2): 441–466

DOI

13
Leuzinger E, Pittet C. On quadratic Dehn functions. Math Z, 2004, 248(4): 725–755

DOI

14
Niblo G A, Roller M A, eds. Geometric Group Theory, Vol 2. London Math Soc Lecture Note Ser, Vol 182. Cambridge: Cambridge Univ Press, 1993

15
Pittet C. Isoperimetric inequalities for homogeneous nilpotent groups. In: Geometric Group Theory (Columbus, OH, 1992). Ohio State Univ Math Res Inst Publ, Vol 3. Berlin: de Gruyter, 1995, 159–164

DOI

16
Pittet C. Isoperimetric inequalities in nilpotent groups. J Lond Math Soc (2), 1997, 55(3): 588–600

17
Raghunathan M S. Discrete Subgroups of Lie Groups. Ergeb Math Grenzgeb, Band 68. New York-Heidelberg: Springer-Verlag, 1972

DOI

18
Varopoulos N Th, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge Tracts in Math, Vol 100. Cambridge: Cambridge Univ Press, 1992

19
Wenger S. A short proof of Gromov’s filling inequality. Proc Amer Math Soc, 2008, 136(8): 2937–2941

DOI

20
Wenger S. Nilpotent groups without exactly polynomial Dehn function. J Topol, 2011, 4(1): 141–160

DOI

21
Wolf J A. Curvature in nilpotent Lie groups. Proc Amer Math Soc, 1964, 15: 271–274

DOI

22
Young R. High-dimensional fillings in Heisenberg groups. 2010, arXiv: 1006.1636v2

23
Young R. Homological and homotopical higher-order filling functions. Groups Geom Dyn, 2011, 5(3): 683–690

DOI

24
Young R. Filling inequalities for nilpotent groups through approximations. Groups Geom Dyn, 2013, 7(4): 977–1011

DOI

Outlines

/