SURVEY ARTICLE

Torus actions, fixed-point formulas, elliptic genera and positive curvature

  • Anand DESSAI
Expand
  • Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, China

Received date: 17 Apr 2016

Accepted date: 14 Jul 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study fixed points of smooth torus actions on closed manifolds using fixed point formulas and equivariant elliptic genera. We also give applications to positively curved Riemannian manifolds with symmetry.

Cite this article

Anand DESSAI . Torus actions, fixed-point formulas, elliptic genera and positive curvature[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1151 -1187 . DOI: 10.1007/s11464-016-0583-2

1
Allday C, Puppe V. Cohomological Methods in Transformation Groups. Cambridge Stud Adv Math, Vol 32. Cambridge: Cambridge Univ Press, 1993

DOI

2
Amann M, Kennard L. Topological properties of positively curved manifolds with symmetry. Geom Funct Anal, 2014, 24: 1377–1405

DOI

3
Atiyah M F. K-Theory. 2nd ed. Advanced Book Classics. Upper Saddle River: Addison-Wesley, 1989

4
Atiyah M F, Bott R. A Lefschetz fixed point formula for elliptic complexes. II. Ann of Math, 1967, 88: 451–491

DOI

5
Atiyah M F, Bott R. The moment map and equivariant cohomology. Topology, 1984, 23: 1–28

DOI

6
Atiyah M F, Bott R, Shapiro A. Clifford modules. Topology, 1964, 3(suppl 1): 3–38

DOI

7
Atiyah M F, Hirzebruch F. Riemann-Roch theorems for differentiable manifolds. Bull Amer Math Soc, 1959, 65: 276–281

DOI

8
Atiyah M F, Hirzebruch F. Vector bundles and homogeneous spaces. In: Proc Sympos Pure Math, Vol III. Providence: Amer Math Soc, 1961, 7–38

DOI

9
Atiyah M F, Hirzebruch F. Spin-Manifolds and group actions. In: Essays on Topology and Related Topics. Memoires dédiés à Georges de Rham. Berlin: Springer, 1970, 18–28

DOI

10
Atiyah M F, Segal G B. The index of elliptic operators: II. Ann of Math, 1968, 87: 531–545

DOI

11
Atiyah M F, Segal G B. Equivariant K-theory and completion. J Differential Geom, 1969, 3: 1–18

12
Atiyah M F, Singer I M. The index of elliptic operators: I. Ann of Math, 1968, 87: 484–530

DOI

13
Atiyah M F, Singer I M. The index of elliptic operators: III. Ann of Math, 1968, 87: 546–604

DOI

14
Berline N, Vergne M. Classes caractéristiques équivariantes. Formules de localization en cohomologie équivariante. C R Acad Sci Paris, 1982, 295: 539–541

15
Boardman J M. On manifolds with involution. Bull Amer Math Soc, 1967, 73: 136–138

DOI

16
Bochner S. Vector fields and Ricci curvature. Bull Amer Math Soc, 1946, 52: 776–797

DOI

17
Borel A. Seminar on Transformation Groups. Ann of Math Stud, No 46. Princeton: Princeton Univ Press, 1960

18
Bott R. Vector fields and characteristic numbers. Michigan Math J, 1967, 14: 231–244

DOI

19
Bott R. A residue formula for holomorphic vector-fields. J Differential Geom, 1967, 1: 311–330

20
Bott R, Taubes C H. On the rigidity theorems of Witten. J Amer Math Soc, 1989, 2: 137–186

DOI

21
Bredon G. Introduction to Compact Transformation Groups. New York: Academic Press, 1972

22
Conner P E, Floyd E E. Differentiable Periodic Maps. Ergebnisse Series, 33. Berlin: Springer, 1964

23
Conner P E, Floyd E E. Maps of odd period. Ann of Math, 1966, 84: 132–156

DOI

24
Dessai A. The Witten genus and S3-actions on manifolds. Preprint 94/6, Univ of Mainz, 1994

25
Dessai A. Rigidity Theorems for Spinc-Manifolds. Topology, 2000, 39: 239–258

DOI

26
Dessai A. Cyclic actions and elliptic genera. Preprint, arXiv: math/0104255

27
Dessai A. Obstructions to positive curvature and symmetry. Preprint, arXiv: math/0104256

28
Dessai A. Elliptic genera, positive curvature and symmetry. Habilitationsschrift, 2002

29
Dessai A. Obstructions to positive curvature and symmetry. Adv Math, 2007, 210: 560–577

DOI

30
Dessai A. Some geometric properties of the Witten genus. In: Proceedings of the Third Arolla Conference on Algebraic Topology August 18-24, 2008. Contemp Math, Vol 504. Providence: Amer Math Soc, 2009, 99–115

DOI

31
Dessai A. Preprint (in preparation)

32
Dessai A, Wiemeler M. Complete intersections with S1-action. Transform Groups (to appear)

33
tom Dieck T. Bordism of G-manifolds and integrality theorems. Topology, 1970, 9: 345–358

DOI

34
tom Dieck T. Transformation Groups. de Gruyter Stud Math, 8. Berlin: de Gruyter, 1987

35
Frankel T. Manifolds with positive curvature. Pacific J Math, 1961, 11: 165–174

DOI

36
Gromov M. Curvature, diameter and Betti numbers. Comment Math Helv, 1981, 56: 179–195

DOI

37
Guillemin VW, Sternberg S. Supersymmetry and Equivariant de Rham Theory. Berlin: Springer, 1999

DOI

38
Hattori A. Spinc-structures and S1-actions. Invent Math, 1978, 48: 7–31

DOI

39
Hattori A, Yoshida T. Lifting compact group actions in fiber bundles. Jpn J Math, 1976, 2: 13–25

40
Hirzebruch F. Involutionen auf Mannigfaltigkeiten. In: Proceedings of the Conference on Transformation Groups, New Orleans. 1968, 148–166

41
Hirzebruch F. Elliptic genera of level N for complex manifolds. In: Bleuler K, Werner M, eds. Differential Geometrical Methods in Theoretical Physics (Como 1987). NATO Adv Sci Inst Ser C: Math Phys Sci, 250. Armsterdam: Kluwer, 1988, 37–63

DOI

42
Hirzebruch F, Berger Th, Jung R. Manifolds and Modular Forms. Aspects Math, Vol E20. Wiesbaden: Friedr Vieweg, 1992

DOI

43
Hirzebruch F, Slodowy P. Elliptic genera, involutions and homogeneous spin-manifolds. Geom Dedicata, 1990, 35: 309–343

DOI

44
Hirzebruch F, Zagier D. The Atiyah-Singer Theorem and Elementary Number Theory. Math Lecture Series 1. Boston: Publish or Perish, 1974

45
Hopf H. Vektorfelder in n-dimensionalen Mannigfaltigkeiten. Math Ann, 1926, 96: 225–250

DOI

46
Hsiang W Y. Cohomology Theory of Topological Transformation Groups. Ergeb Math Grenzgeb. Berlin: Springer, 1975

DOI

47
Jänich K, Ossa E. On the signature of an involution. Topology, 1969, 8: 27–30

DOI

48
Kawakubo K. The Theory of Transformation Groups. Oxford: Oxford Univ Press, 1992

49
Kennard L. On the Hopf conjecture with symmetry. Geom Topol, 2013, 17: 563–593

DOI

50
Kobayashi S. Transformation Groups in Differential Geometry. Ergeb Math Grenzgeb. Berlin: Springer, 1972

DOI

51
Kosniowski C. Applications of the holomorphic Lefschetz formula. Bull Lond Math Soc, 1970, 2: 43–48

DOI

52
Kosniowski C. Fixed points and group actions. In: Algebraic Topology, Proc Conf, Aarhus 1982. Lecture Notes in Math, Vol 1051. Berlin: Springer, 1984, 603–609

DOI

53
Kosniowski C, Stong R E. Involutions and characteristic numbers. Topology, 1978, 17: 309–330

DOI

54
Kriˇcever I M. Formal groups and the Atiyah-Hirzebruch formula. Math USSR Investija, 1974, 6: 1271–1285

DOI

55
Kriˇcever I M. Obstructions to the existence of S1-actions. Bordism of ramified coverings. Math USSR Investija, 1977, 10: 783–797

DOI

56
Landweber P S, ed. Elliptic Curves and Modular Forms in Algebraic Topology. Proceedings Princeton 1986. Lecture Notes in Math, Vol 1326. Berlin: Springer, 1988

57
Lashof R. Poincaré duality and cobordism. Trans Amer Math Soc, 1963, 109: 257–277

58
Lawson H B, MichelsohnM-L. Spin Geometry. Princeton Math Ser 38. Princeton: Princeton Univ Press, 1989

59
Lichnerowicz A. Spineurs harmoniques. C R Acad Sci, 1963, 257: 7–9

60
Liu K. On modular invariance and rigidity theorems. J Differential Geom, 1995, 41: 343–396

61
Lusztig G. Remarks on the holomorphic Lefschetz numbers. In: Analyse globale. Śem Math Sup´erieures, No 42. Montŕeal: Presses Univ Montŕeal, 1971, 193–204

62
Milnor J.On the cobordism ring Ω∗ and a complex analogue. Part I. Amer J Math, 1960, 82: 505–521

DOI

63
Milnor J, Stasheff J. Characteristic classes. Ann of Math Stud, Vol 76. Princeton: Princeton Univ Press, 1974

64
Musin O R. On rigid Hirzebruch genera. Mosc Math J, 2011, 11: 139–147

65
Novikov S P. Some problems in the topology of manifolds connected with the theory of Thom spaces. Soviet Math Dokl, 1960, 1: 717–720

66
Petrie T. Smooth S1-actions on homotopy complex projective spaces and related topics. Bull Amer Math Soc, 1972, 78: 105–153

DOI

67
Quillen D. The spectrum of an equivariant cohomology ring. I. Ann of Math, 1971, 98: 549–571

DOI

68
Quillen D. The spectrum of an equivariant cohomology ring. II. Ann of Math, 1971, 98: 573–602

DOI

69
Segal G B. Equivariant K-theory. Publ Math Inst Hautes Études Sci, 1968, 34: 129–151

DOI

70
Stewart T E. Lifting group actions in fibre bundles. Ann of Math, 1961, 74: 192–198

DOI

71
Stolz St.A conjecture concerning positive Ricci curvature and the Witten genus. Math Ann, 1996, 304: 785–800

DOI

72
Su J C. Transformation groups on cohomology projective spaces. Trans Amer Math Soc, 1963, 106: 305–318

DOI

73
Switzer R M. Algebraic Topology—Homotopy and Homology. Grundlehren MathWiss, 212. Berlin: Springer, 1975

DOI

74
Taubes C H. S1 Actions and elliptic genera. Comm Math Phys, 1989, 122: 455–526

DOI

75
Thom R. Espaces fibrés en sphères et carrés de Steenrod. Ann Sci Éc Norm Supér, III Sér, 1952, 69: 109–182

76
Thom R. Quelques propriétés globales des variétés différentiables. Comment Math Helv, 1954, 28: 17–86

DOI

77
Tu L W. What is ... equivariant cohomology? Notices Amer Math Soc, 2011, 58: 423–426

78
Weisskopf N. Positive curvature and the elliptic genus. Preprint, arXiv: 1305.5175

79
Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191: 259–297

DOI

80
Wilking B. Nonnegatively and positively curved manifolds. In: Metric and Comparison Geometry. Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 25–62

81
Witten E. The index of the Dirac operator in loop space. In: Lecture Notes in Math, Vol 1326. Berlin: Springer, 1988, 161–181

DOI

82
Ziller W. Examples of Riemannian manifolds with non-negative sectional curvature. In: Metric and Comparison Geometry. Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 63–102

Outlines

/