RESEARCH ARTICLE

Valuation ideals and primary w-ideals

  • Gyu Whan CHANG 1,2 ,
  • Hwankoo KIM , 1,2
Expand
  • 1. Department of Mathematics Education, Incheon National University, Incheon 406-772, Republic of Korea
  • 2. Department of Information Security, Hoseo University, Asan 336-795, Republic of Korea

Received date: 09 Nov 2015

Accepted date: 29 Jan 2016

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let D be an integral domain, V(D) (resp., t-V(D)) be the set of all valuation (resp., t-valuation) ideals of D, and w-P(D) be the set of primary w-ideals of D. Let D[X] be the polynomial ring over D, c(f) be the ideal of D generated by the coefficients of f D[X], and Nv= {f D[X] | c(f)v=D}. In this paper, we study integral domains D in which w-P(D) ⊆ t-V(D), t-V(D) ⊆ w-P(D), or t-V(D) = w-P(D). We also study the relationship between t-V(D) and V(D[X]Nv), and characterize when t-V(A + XB[X]) ⊆w-P(A + XB[X]) holds for a proper extension A B of integral domains.

Cite this article

Gyu Whan CHANG , Hwankoo KIM . Valuation ideals and primary w-ideals[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 829 -844 . DOI: 10.1007/s11464-016-0554-7

1
Anderson D D, Anderson D F, Zafrullah M. The ring D+XDS[X] and t-splitting sets. Arab J Sci Eng Sect C Theme Issues, 2001, 26: 3–16

2
Anderson D F, Chang G W, Park J. Weakly Krull and related domains of the form D+ M, A+ XB[X] and A+ X2B[X].Rocky Mountain J Math, 2006, 36: 1–22

DOI

3
Anderson D F, El Abidine D N. The A+ XB[X] and A+XB[[X]] constructions from GCD-domains. J Pure Appl Algebra, 2001, 159: 15–24

DOI

4
Chang G W. Strong Mori domains and the ring D[X]Nv.J Pure Appl Algebra, 2005, 197: 293–304

DOI

5
Chang G W. Prüfer v-multiplication domains, Nagata rings, and Kronecker function rings. J Algebra, 2008, 319: 309–319

DOI

6
Chang G W. Prüfer v-multiplication domains and valuation ideals. Houston J Math, 2013, 39: 363–371

7
Chang G W, Fontana M. Upper to zero in polynomial rings and Prüfer-like domains. Comm Algebra, 2009, 37: 164–192

DOI

8
Chang G W, Zafrullah M. The w-integral closure of integral domains. J Algebra, 2006, 295: 195–210

DOI

9
Emerson S S. Overrings of an Integral Domain. Doctoral Thesis, University of North Texas, 1992

10
Gilmer R. A class of domains in which primary ideals are valuation ideals. Math Ann, 1965, 161: 247–254

DOI

11
Gilmer R. Multiplicative Ideal Theory. Queen’s Papers in Pure and Applied Mathematics 90. Queen’s University, Kingston, Ontario, 1992

12
Gilmer R, Ohm J. Primary ideals and valuation ideals. Trans Amer Math Soc, 1965, 117: 237–250

DOI

13
Griffin M. Rings of Krull type. J Reine Angew Math, 1968, 229: 1–27

14
Houston E, M. Zafrullah M. On t-invertibility II. Comm Algebra, 1989, 17: 1955–1969

DOI

15
Kang B G. Prüfer v-multiplication domains and the ring R[X]Nv.J Algebra, 1989, 123: 151–170

DOI

16
Zariski O, Samuel P. Commutative Algebra, Vol 2. New York: van Nostrand, 1961

Outlines

/