RESEARCH ARTICLE

Singularities of symplectic and Lagrangian mean curvature flows

  • Xiaoli HAN 1 ,
  • Jiayu LI , 2,3
Expand
  • 1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
  • 2. Mathematics Group, The Abdus Salam ICTP, Trieste 34100, Italy
  • 3. Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China

Received date: 27 Sep 2008

Accepted date: 13 Feb 2009

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Kähler-Einstein surface. We prove that the blow-up flow s at a singular point(X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in 4, if - is connected.

Cite this article

Xiaoli HAN , Jiayu LI . Singularities of symplectic and Lagrangian mean curvature flows[J]. Frontiers of Mathematics in China, 2009 , 4(2) : 283 -296 . DOI: 10.1007/s11464-009-0018-4

1
Chen J, Li J. Mean curvature flow of surface in 4-manifolds. Adv Math, 2001, 163: 287-309

DOI

2
Chen J, Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent Math, 2004, 156: 25-51

DOI

3
Chen J, Tian G. Minimal surfaces in Riemannian 4-manifolds. Geom Funct Anal, 1997, 7: 873-916

DOI

4
Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 28(3): 333-354

DOI

5
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math, 1983, 105: 59-83

DOI

6
Ecker K, Huisken G. Mean curvature evolution of entire graphs. Ann Math, 1989, 130: 453-471

DOI

7
Fujimoto H. Nevanlinna theory and minimal surfaces. In: Osserman R, ed. Geometry V, Minimal Surfaces. Berlin: Springer-Verlag, 1997, 95-151

8
Han X, Li J. The mean curvature flow approach to the symplectic isotopy problem. IMRN2005, 26: 1611-1620

DOI

9
Hoffman D A, Osserman R. The Geometry of the Generalized Gauss Map. Memoirs of AMS, No 236. Providence: Amer Math Soc, 1980

10
Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1986, 84: 463-480

DOI

11
Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Diff Geom, 1990, 31: 285-299

12
Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var PDE, 1999, 8: 1-14

DOI

13
Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math, 1999, 183: 45-70

DOI

14
Neves A. Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent Math, 2007, 168(3): 449-484

DOI

15
Simon L. Lectures on Geometric Measure Theory. Proc Center Math Anal, 3. Canberra: Australian National Univ Press, 1983

16
Smoczyk K. Harnack inequality for the Lagrangian mean curvature flow. Calc Var PDE, 1999, 8: 247-258

DOI

17
Smoczyk K. Der Lagrangesche mittlere Kruemmungsfluss. Univ Leipzig (Habil- Schr), 102 S. 2000

18
Smoczyk K. Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849-883

DOI

19
Thomas R, Yau S T. Special Lagrangians, stable bundles and mean curvature flow. <patent>math.DG/0104197</patent>, 2001

20
Wang M-T. Mean curvature flow of surfaces in Einstein four manifolds. J Diff Geom, 2001, 57: 301-338

21
White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123-138

DOI

Options
Outlines

/