RESEARCH ARTICLE

Ring of invariants of general linear group over local ring pm

  • Jizhu NAN , 1 ,
  • Yin CHEN 2
Expand
  • 1. School of Mathematics Sciences, Dalian University of Technology, Dalian 116024, China
  • 2. School of Mathematics & Statistics, Northeast Normal University, Changchun 130024, China

Received date: 25 Oct 2009

Accepted date: 11 Jul 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let pm be the ring of integers modulo pm, where p is a prime and m≥1. The general linear group GLn(pm) acts naturally on the polynomial algebra An:=pm[x1,,xn]. Denote by AnGLn(pm) the corresponding ring of invariants. The purpose of the present paper is to calculate this invariant ring. Our results also generalize the classical Dickson’s theorem.

Cite this article

Jizhu NAN , Yin CHEN . Ring of invariants of general linear group over local ring pm[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 887 -899 . DOI: 10.1007/s11464-011-0151-8

1
Benson D. Polynomial Invariants of Finite Groups. Cambridge: Cambridge University Press, 1993

DOI

2
Chen Y. Modular Invariants of Finite Classical Groups. <DissertationTip/>. Dalian: Dalian University of Technology, 2009

3
Derksen H, Kemper G. Computatinal Invariant Theory. Berlin: Springer-Verlag, 2002

4
Dickson L E. A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans Am Math Soc, 1911, 12: 75-98

DOI

5
Hu S J, Kang M C. Efficient generation of the ring of invariants. J Algebra, 1996, 180: 341-363

DOI

6
Mead D G. Generators for the algebra of symmetric polynomials. Am Math Monthly, 1993, 100: 391-397

DOI

7
Nan J, Chen Y. Rational invariants of certain classical similitude groups over finite fields. Indiana Univ Math J, 2008, 57(4): 1947-1957

DOI

8
Neusel M D. Invariant Theory. Providence: Am Math Soc, 2006

9
Richman D. Explicit generators of the invariants of finite groups. Adv Math, 1996, 124: 49-76

DOI

10
Smith L. Polynomial Invariants of Finite Groups. Natick: A K Peters, Ltd, 1995

11
Smith L. Polynomial invariants of finite groups: a survey of recent developments. Bull of Am Math Soc, 1997, 34(3): 211-250

DOI

12
Wilkerson C. A primer on the Dickson invariants. Contemp Math, 1983, 19: 421-434

Options
Outlines

/