Frontiers of Mathematics in China >
Ring of invariants of general linear group over local ring
Received date: 25 Oct 2009
Accepted date: 11 Jul 2011
Published date: 01 Oct 2011
Copyright
Let be the ring of integers modulo pm, where p is a prime and m≥1. The general linear group GLn() acts naturally on the polynomial algebra . Denote by the corresponding ring of invariants. The purpose of the present paper is to calculate this invariant ring. Our results also generalize the classical Dickson’s theorem.
Key words: Dickson’s theorem; invariant; finite local ring
Jizhu NAN , Yin CHEN . Ring of invariants of general linear group over local ring [J]. Frontiers of Mathematics in China, 2011 , 6(5) : 887 -899 . DOI: 10.1007/s11464-011-0151-8
1 |
Benson D. Polynomial Invariants of Finite Groups. Cambridge: Cambridge University Press, 1993
|
2 |
Chen Y. Modular Invariants of Finite Classical Groups. <DissertationTip/>. Dalian: Dalian University of Technology, 2009
|
3 |
Derksen H, Kemper G. Computatinal Invariant Theory. Berlin: Springer-Verlag, 2002
|
4 |
Dickson L E. A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans Am Math Soc, 1911, 12: 75-98
|
5 |
Hu S J, Kang M C. Efficient generation of the ring of invariants. J Algebra, 1996, 180: 341-363
|
6 |
Mead D G. Generators for the algebra of symmetric polynomials. Am Math Monthly, 1993, 100: 391-397
|
7 |
Nan J, Chen Y. Rational invariants of certain classical similitude groups over finite fields. Indiana Univ Math J, 2008, 57(4): 1947-1957
|
8 |
Neusel M D. Invariant Theory. Providence: Am Math Soc, 2006
|
9 |
Richman D. Explicit generators of the invariants of finite groups. Adv Math, 1996, 124: 49-76
|
10 |
Smith L. Polynomial Invariants of Finite Groups. Natick: A K Peters, Ltd, 1995
|
11 |
Smith L. Polynomial invariants of finite groups: a survey of recent developments. Bull of Am Math Soc, 1997, 34(3): 211-250
|
12 |
Wilkerson C. A primer on the Dickson invariants. Contemp Math, 1983, 19: 421-434
|
/
〈 |
|
〉 |