Frontiers of Mathematics in China >
Coquasitriangular Hopf group coalgebras and braided monoidal categories
Received date: 07 Jul 2010
Accepted date: 14 Jul 2011
Published date: 01 Oct 2011
Copyright
Let π be a group, and let H be a Hopf π-coalgebra. We first show that the category of right π-comodules over H is a monoidal category and there is a monoidal endofunctor (Fα, id, id) of for any . Then we give the definition of coquasitriangular Hopf π-coalgebras. Finally, we show that H is a coquasitriangular Hopf π-coalgebra if and only if is a braided monoidal category and (Fα, id, id) is a braided monoidal endofunctor of for any .
Meiling ZHU , Huixiang CHEN , Libin LI . Coquasitriangular Hopf group coalgebras and braided monoidal categories[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 1009 -1020 . DOI: 10.1007/s11464-011-0152-7
1 |
Chen H X. Cocycle deformations, braided monoidal categories and quasitriangularity. Chinese Sci Bull, 1999, 44(6): 510-513
|
2 |
Drinfeld V G. Quantum groups. In: Proc ICM, 1986, Vol 1. Providence: Am Math Soc, 1987, 798-820
|
3 |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
|
4 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS series in Math, Vol 82. Providence: Am Math Soc, 1993
|
5 |
Radford D E. On the antipode of a quasitriangular Hopf algebra. J Algebra, 1992, 151: 1-11
|
6 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
7 |
Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories. Preprint, <patent>GT/0005291v1</patent>
|
8 |
Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171(1): 75-122
|
9 |
Wang S H. Coquasitriangular Hopf group algebras and Drinfeld codoubles. Commun Algebra, 2007, 35: 1-25
|
/
〈 | 〉 |