RESEARCH ARTICLE

Coquasitriangular Hopf group coalgebras and braided monoidal categories

  • Meiling ZHU ,
  • Huixiang CHEN ,
  • Libin LI
Expand
  • School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

Received date: 07 Jul 2010

Accepted date: 14 Jul 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let π be a group, and let H be a Hopf π-coalgebra. We first show that the category H of right π-comodules over H is a monoidal category and there is a monoidal endofunctor (Fα, id, id) of H for any απ. Then we give the definition of coquasitriangular Hopf π-coalgebras. Finally, we show that H is a coquasitriangular Hopf π-coalgebra if and only if H is a braided monoidal category and (Fα, id, id) is a braided monoidal endofunctor of H for any απ.

Cite this article

Meiling ZHU , Huixiang CHEN , Libin LI . Coquasitriangular Hopf group coalgebras and braided monoidal categories[J]. Frontiers of Mathematics in China, 2011 , 6(5) : 1009 -1020 . DOI: 10.1007/s11464-011-0152-7

1
Chen H X. Cocycle deformations, braided monoidal categories and quasitriangularity. Chinese Sci Bull, 1999, 44(6): 510-513

2
Drinfeld V G. Quantum groups. In: Proc ICM, 1986, Vol 1. Providence: Am Math Soc, 1987, 798-820

3
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995

4
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS series in Math, Vol 82. Providence: Am Math Soc, 1993

5
Radford D E. On the antipode of a quasitriangular Hopf algebra. J Algebra, 1992, 151: 1-11

DOI

6
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

7
Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories. Preprint, <patent>GT/0005291v1</patent>

8
Virelizier A. Hopf group-coalgebras. J Pure Appl Algebra, 2002, 171(1): 75-122

DOI

9
Wang S H. Coquasitriangular Hopf group algebras and Drinfeld codoubles. Commun Algebra, 2007, 35: 1-25

Options
Outlines

/