SURVEY ARTICLE

Parafermion vertex operator algebras

  • Chongying DONG 1,2 ,
  • Qing WANG , 3
Expand
  • 1. Department of Mathematics, University of California, Santa Cruz, CA 95064, USA
  • 2. School of Mathematics, Sichuan University, Chengdu 610065, China
  • 3. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Received date: 29 Oct 2010

Accepted date: 07 Apr 2011

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper reviews some recent results on the parafermion vertex operator algebra associated to the integrable highest weight module (k, 0) of positive integer level k for any affine Kac-Moody Lie algebra g^, where g is a finite dimensional simple Lie algebra. In particular, the generators and the C2-cofiniteness of the parafermion vertex operator algebras are discussed. A proof of the well-known fact that the parafermion vertex operator algebra can be realized as the commutant of a lattice vertex operator algebra in (k, 0) is also given.

Cite this article

Chongying DONG , Qing WANG . Parafermion vertex operator algebras[J]. Frontiers of Mathematics in China, 2011 , 6(4) : 567 -579 . DOI: 10.1007/s11464-011-0138-5

1
Abe T, Buhl G, Dong C. Rationality, regularity and C2-cofiniteness. Trans Am Math Soc, 2004, 356: 3391-3402

DOI

2
Blumenhagen R, Eholzer W, Honecker A, Hornfeck K, Hübel R. Coset realization of unifying W-algebras. Inter J Mod Phys A, 1995, 10: 2367-2430

DOI

3
Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068-3071

DOI

4
Dong C. Vertex algebras associated with even lattices. J Algebra, 1993, 160: 245-265

DOI

5
Dong C, Griess Jr R. Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math J, 2002, 50: 227-239

DOI

6
Dong C, Griess Jr R, Hoehn G. Framed vertex operator algebras, codes and the moonshine module. Commun Math Phys, 1998, 193: 407-448

DOI

7
Dong C, Lam C H, Wang Q, Yamada H. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323: 371-381

DOI

8
Dong C, Lam C H, Yamada H. W-algebras in lattice vertex operator algebras. In: Doebner H-D, Dobrev V K, eds. Lie Theory and Its Applications in Physics VII. Proc of the VII International Workshop, Varna, Bulgaria, 2007. Bulgarian J Phys, 2008, 35(suppl): 25-35

9
Dong C, Lam C H, Yamada H. W-algebras related to parafermion algebras. J Algebra, 2009, 322: 2366-2403

DOI

10
Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math, Vol 112. Boston: Birkhäuser, 1993

11
Dong C, Li H, Mason G. Regularity of rational vertex operator algebra. Adv Math, 1997, 312: 148-166

DOI

12
Dong C, Li H, Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310: 571-600

DOI

13
Dong C, Li H, Mason G. Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun Math Phys, 2000, 214: 1-56 Parafermion vertex operator algebras 579

DOI

14
Dong C, Li H, Mason G, Norton S P. Associative subalgebras of Griess algebra and related topics. In: Ferrar J, Harada K, eds. Proc Conf Monster and Lie Algebras, Ohio State University, May 1996. Berlin: de Gruyter, 1998

15
Dong C, Wang Q. The structure of parafermion vertex operator algebras: general case. Commun Math Phys, 2010, 299: 783-792

DOI

16
Dong C, Wang Q. On C2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328: 420-431

DOI

17
Dong C, Zhang W. Rational vertex operator algebras are finitely generated. J Algebra, 2008, 320: 2610-2614

DOI

18
Frenkel I, Kac V. Basic representations of affine Lie algebras and dual resonance models. Invent Math, 1980, 62: 23-66

DOI

19
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Math, Vol 134. Boston: Academic Press, 1988

20
Frenkel I, Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66: 123-168

DOI

21
Gaberdiel M, Neitzke A. Rationality, quasirationality, and finite W-algebras. Commun Math Phys, 2003, 238: 147-194

22
Gepner D. New conformal field theory associated with Lie algebras and their partition functions. Nucl Phys B, 1987, 290: 10-24

DOI

23
Goddard P, Kent A, Olive D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun Math Phys, 1986, 103: 105-119

DOI

24
Kac V G. Infinite-dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990

DOI

25
Lepowsky J, Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004

DOI

26
Lepowsky J, Primc M. Structure of the Standard Modules for the Affine Lie Algebra A1(1). Contemporary Math, Vol 46. Providence: Am Math Soc, 1985

27
Lepowsky J, Wilson R L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc Natl Acad Sci USA, 1981, 78: 7245-7248

DOI

28
Lepowsky J, Wilson R L. The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent Math, 1984, 77: 199-290

DOI

29
Li H. Some finiteness properties of regular vertex operator algebras. J Algebra, 1999, 212: 495-514

DOI

30
Meurman A, Primc M. Vertex operator algebras and representations of affine Lie algebras. Acta Appl Math, 1996, 44: 207-215

DOI

31
Segal G. Unitary representations of some infinite-dimensional groups. Commun Math Phys, 1981, 80: 301-342

DOI

32
Wang W. Rationality of Virasoro vertex operator algebras. Inter Math Res Not, 1993, 7: 197-211

DOI

33
Zamolodchikov A B, Fateev V A. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ℤN-symmetric statistical systems. Sov Phys JETP, 1985, 62: 215-225

34
Zhu Y. Modular Invariance of characters of vertex operator algebras. J Am Math Soc, 1996, 9: 237-302

DOI

Options
Outlines

/