RESEARCH ARTICLE

Convergence analysis of generalized nonlinear inexact Uzawa algorithm for stabilized saddle point problems

  • Junfeng LU ,
  • Zhenyue ZHANG
Expand
  • Department of Mathematics, Zhejiang University, Yu-Quan Campus, Hangzhou 310027, China

Received date: 10 Nov 2010

Accepted date: 16 Mar 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper deals with a modified nonlinear inexact Uzawa (MNIU) method for solving the stabilized saddle point problem. The modified Uzawa method is an inexact inner-outer iteration with a variable relaxation parameter and has been discussed in the literature for uniform inner accuracy. This paper focuses on the general case when the accuracy of inner iteration can be variable and the convergence of MNIU with variable inner accuracy, based on a simple energy norm. Sufficient conditions for the convergence of MNIU are proposed. The convergence analysis not only greatly improves the existing convergence results for uniform inner accuracy in the literature, but also extends the convergence to the variable inner accuracy that has not been touched in literature. Numerical experiments are given to show the efficiency of the MNIU algorithm.

Cite this article

Junfeng LU , Zhenyue ZHANG . Convergence analysis of generalized nonlinear inexact Uzawa algorithm for stabilized saddle point problems[J]. Frontiers of Mathematics in China, 2011 , 6(3) : 473 -492 . DOI: 10.1007/s11464-011-0129-6

1
Bank R, Welfert B, Yserentant H. A class of iterative methods for solving saddle point problems. Numer Math, 1990, 56: 645-666

DOI

2
Benzi M, Golub G H. A preconditioner for generalized saddle point problems. SIAM J Matrix Anal Appl, 2004, 26: 20-41

DOI

3
Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems. Acta Numer, 2005, 14: 1-137

DOI

4
Benzi M, Liu J. An efficient solver for the incompressible Navier-Stokes equations in rotation form. SIAM J Sci Comput, 2007, 29: 1959-1981

DOI

5
Bramble J H, Pasciak J E. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math Comp, 1988, 50: 1-17

DOI

6
Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J Numer Anal, 1997, 34: 1072-1092

DOI

7
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991

8
Cao Z H. Fast Uzawa algorithm for generalized saddle point problems. Appl Numer Math, 2003, 46: 157-171

DOI

9
Cheng X L. On the nonlinear inexact Uzawa algorithm for saddle point problems. SIAM J Numer Anal, 2000, 37: 1930-1934

DOI

10
Elman H C, Golub G H. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J Numer Anal, 1994, 31: 1645-1661

DOI

11
Elman H C, Ramage A, Silvester D J. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans Math Softw, 2007, 33: 1-18

12
Elman H C, Silvester D J, Wathen A J. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numer Math Sci Comput. Oxford: Oxford University Press, 2005

13
Hu Q, Zou J. An iterative method with variable relaxation parameters for saddle-point problems. SIAM J Matrix Anal Appl, 2001, 23: 317-338

DOI

14
Hu Q, Zou J. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer Math, 2002, 93: 333-359

DOI

15
Hu Q, Zou J. Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems. SIAM J Optim, 2006, 16: 798-825

DOI

16
Lin Y Q, Cao Y H. A new nonlinear Uzawa algorithm for generalized saddle point problems. Appl Math Comput, 2006, 175: 1432-1454

DOI

17
Lin Y Q, Wei Y M. A convergence analysis of the nonlinear Uzawa algorithm for saddle point problems. Appl Math Lett, 2007, 20: 1094-1098

DOI

18
Lu J F, Zhang Z Y. A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem. SIAM J Matrix Anal Appl, 2010, 31: 1934-1957

DOI

19
Paige C C, Saunders M A. Solution of sparse indefinite systems of linear equations. SIAM J Numer Anal, 1975, 12: 617-629

DOI

20
Rusten T, Winther R. A preconditioned iterative method for saddle point problems. SIAM J Matrix Anal Appl, 1992, 13: 887-904

DOI

21
Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput, 1993, 14: 461-469

DOI

22
Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: SIAM, 2003

DOI

23
Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Statist Comput, 1986, 7: 856-869

DOI

24
Silvester D J, Wathen A J. Fast iterative solution of stabilized Stokes systems II: Using general block preconditioners. SIAM J Numer Anal, 1994, 31: 1352-1367

DOI

25
Uzawa H. Iterative methods for concave programming. In: Arrow K J, Hurwicz L, Uzawa H, eds. Studies in Linear and Nonlinear Programming. Stanford: Stanford University Press, 1958, 154-165

Options
Outlines

/