RESEARCH ARTICLE

Regularity for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables

  • Hongya GAO ,
  • Qiuhua HUANG ,
  • Fang QIAN
Expand
  • College of Mathematics and Computer Science, Hebei University, Baoding 071002, China

Received date: 30 Aug 2010

Accepted date: 11 Nov 2010

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The definition for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables is given. A regularity property is obtained by using the stability result of Hodge decomposition, some analytical tools of Sobolev spaces, and differential geometry, which can be regarded as a generalization of the results due to T. Iwaniec and Hongya Gao.

Cite this article

Hongya GAO , Qiuhua HUANG , Fang QIAN . Regularity for weakly (K1,K2(x))-quasiregular mappings of several n-dimensional variables[J]. Frontiers of Mathematics in China, 2011 , 6(2) : 241 -251 . DOI: 10.1007/s11464-011-0093-1

1
Dairbekov N S. The concept of a quasiregular mapping of several n-dimensional variables. Dokl. RAN, 1992, 423(3): 511-514

2
Dairbekov N S. Quasiregular mappings of several n-dimensional variables. Siberian Mathematical Journal, 1993, 34(4): 87-102

DOI

3
Dairbekov N S. Stability of classes of quasiregular mappings in several spatial variables. Siberian Mathematical Journal, 1995, 36(1): 43-54

DOI

4
Donalson S K, Sullivan D P. Qasiconformal conformal 4-manifolds. Acta Math, 1989, 163: 181-252

5
Gao Hongya. Regularity for weakly (K1,K2)-quasiregular mappings. Sci in China, Ser A, 2003, 46(4): 499-505

6
Gao Hongya, Li Tong. On degenerate weakly (K1,K2)-quasiregular mappings. Acta Math Sci, 2008, 28B(1): 163-170

DOI

7
Gao Hongya, Liu Haihong, Zhou Shuqing. Higher integrability for weakly (K1,K2(x))-quasiregular mappings. Acta Math Sin, 2009, 52(5): 847-852 (in Chinese)

8
Gao Hongya, Zhou Shuqing, Meng Yuqin. A new inequality for weakly (K1,K2)-quasiregular mappings. Acta Math Sin (Eng Ser), 2007, 23(12): 2241-2246

DOI

9
Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann of Math Stud, 105. Princeton: Princeton Univ Press, 1983

10
Iwaniec T. p-harmonic tensors and quasiregular mappings. Ann of Math, 1992, 136(3): 589-624

DOI

11
Iwaniec T, Martin G. Quasiregular mappings in even dimensions. Acta Math, 1993, 170: 29-81

DOI

12
Iwaniec T, Martin G. Geometric Function and Non-linear Analysis. Oxford: Clarendon Press, 2001

13
Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Arch Rational Mech Anal, 1992, 119: 129-143

DOI

14
Martio O, Rickman S, Väisälä J. Definitions for quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1969, 448: 1-40

15
Martio O, Rickman S, Väisälä J. Distortions and singularities of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1970, 465: 1-13

16
Martio O, Rickman S, Väisälä J. Topological and metric properties of quasiregular mappings. Ann Acad Sci Fenn, Ser AI, 1971, 488: 1-31

17
Reshetnyak Yu G. Space Mappings with Bounded Distortion. Trans Math Monographs, Vol 73. Providence: Amer Math Soc, 1989

Options
Outlines

/