Frontiers of Mathematics in China >
Quantum superdeterminants for OSPq(1|2n)
Received date: 22 Mar 2010
Accepted date: 25 Sep 2010
Published date: 01 Feb 2011
Copyright
It is shown that there exists a quantum superdeterminant sdetqT for the quantum super group OSPq(1|2n). It is also shown that the quantum superdeterminant sdetqT is a group-like element and central, and that the square of sdetqT for OSPq(1|2n) is equal to 1.
Junli LIU , Shilin YANG . Quantum superdeterminants for OSPq(1|2n)[J]. Frontiers of Mathematics in China, 2011 , 6(1) : 115 -127 . DOI: 10.1007/s11464-010-0087-4
1 |
Bergman G M. The diamond lemma for ring theory. Adv Math, 1978, 29: 178-218
|
2 |
Fiore G. Quantum groups SOq(N), Spq(n) have q-determinants, too. J Phys A Math Gen, 1994, 27: 3795-3802
|
3 |
Hai P H. On the structure of quantum super groups GLq(m|n). J Algebra, 1999, 211: 363-383
|
4 |
Hayashi T. Quantum groups and quantum determinants. J Algebra, 1992, 152: 146-165
|
5 |
Liu J L, Yang S L. Orthosymplectic quantum function superalgebras OSPq(2l+1|2n). Acta Math Sin (Eng Ser) (to appear)
|
6 |
Lyubashenko V V, Sudbery A. Quantum super groups of GL(n|m) type: differential forms, Koszul complexes and Berezinians. Duke Math J, 1997, 90: 1-62
|
7 |
Manin Yu I. Multiparametric quantum deformation of the general linear supergroups. Comm Math Phys, 1989, 123: 163-175
|
8 |
Parshall B, Wang J. Quantum Linear Groups. Mem Amer Math Soc, No 439.Providence: Amer Math Soc, 1991
|
9 |
Takeuchi M. Matric bialgebras and quantum groups. Israel J Math, 1990, 72: 232-251
|
/
〈 | 〉 |