RESEARCH ARTICLE

A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it

  • Yiyong LI ,
  • Qingzhi YANG ,
  • Yuning YANG
Expand
  • Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received date: 04 Apr 2014

Accepted date: 04 Jul 2014

Published date: 24 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give a new definition of geometric multiplicity of eigenvalues of tensors, and based on this, we study the geometric and algebraic multiplicity of irreducible tensors’ eigenvalues. We get the result that the eigenvalues with modulus ρ(A) have the same geometric multiplicity. We also prove that twodimensional nonnegative tensors’ geometric multiplicity of eigenvalues is equal to algebraic multiplicity of eigenvalues.

Cite this article

Yiyong LI , Qingzhi YANG , Yuning YANG . A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1123 -1146 . DOI: 10.1007/s11464-015-0412-z

1
Bulò S R, Pelillo M. A generalization of the Motzkin-Straus theorem to hypergraphs. Optim Lett, 2009, 3: 287-295

DOI

2
Bulò S R, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stützle T, ed. Learning and Intelligent Optimization. Berlin: Springer-Verlag, 2009, 45-48

DOI

3
Chang K C. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22: 542-554

DOI

4
Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for non-negative tensors. Commun Math Sci, 2008, 6: 507-520

DOI

5
Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422

DOI

6
Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32: 806-819

DOI

7
Chang K C, Qi L, Zhang T. A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl, 2013, 20: 891-912

DOI

8
Chang K C, Zhang T. Multiplicity of singular values for tensors. Commun Math Sci, 2009, 7: 611-625

DOI

9
Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738-749

DOI

10
Hu S, Huang Z H, Qi L. Strictly nonnegative tensors and nonnegative tensor partition. Sci China Math, 2014, 57: 181-195

DOI

11
Lim L H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1: 129-132

12
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090-1099

DOI

13
Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4: 421-427

14
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

DOI

15
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501-526

DOI

16
Shao J. A general product of tensors with applications. Linear Algebra and Its Applications, 2013, 439: 2350-2366

DOI

17
Varga R. Matrix Iterative Analysis. Berlin: Springer-Verlag, 2000

DOI

18
Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250

DOI

19
Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530

DOI

20
Yang Y, Yang Q. Geometric simplicity of the spectral radius of nonnegative irreducible tensors. Front Math China, 2013, 8(1): 129-140

DOI

Outlines

/