RESEARCH ARTICLE

Hopf *-algebra structures on H(1, q)

  • Hassen Suleman Esmael MOHAMMED 1 ,
  • Tongtong LI 2 ,
  • Huixiang CHEN , 1
Expand
  • 1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
  • 2. Jiangyan No. 2 High School, Jiangyan 225500, China

Received date: 05 Sep 2014

Accepted date: 03 Dec 2014

Published date: 12 Oct 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over . It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.

Cite this article

Hassen Suleman Esmael MOHAMMED , Tongtong LI , Huixiang CHEN . Hopf *-algebra structures on H(1, q)[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1415 -1432 . DOI: 10.1007/s11464-015-0454-2

1
Chen H X. A class of noncommutative and noncocommutative Hopf algebras—the quantum version. Comm Algebra, 1999, 27: 5011−5023

DOI

2
Chen H X. Irreducible representations of a class of quantum doubles. J Algebra, 2000, 225: 391−409

DOI

3
Chen H X. Finite-dimensional representations of a quantum double. J Algebra, 2002, 251: 751−789

DOI

4
Chen H X. Representations of a class of Drinfeld’s doubles. Comm Algebra, 2005, 33: 2809−2825

DOI

5
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995

DOI

6
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995

DOI

7
Masuda T, Mimachi K, Nagakami Y, Noumi M, Saburi Y, Ueno K. Unitary representations of the quantum group SUq(1.1): Structure of the dual space of Uq(sl(2)). Lett Math Phys, 1990, 19: 187−194

DOI

8
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993

9
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

10
Wang Z, Chen H X. Generic modules over a class of Drinfeld’s quantum doubles. Comm Algebra, 2008, 36: 3730−3749

DOI

11
Woronowicz S L. Compact matrix pseudo-groups. Comm Math Phys, 1987, 111: 613−665

DOI

12
Woronowicz S L. Twisted SU(N) group. An example of non-commutative differential calculus. Publ Res Inst Math Sci, 1987, 23: 117−181

DOI

13
Woronowicz S L. Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU(N) groups. Invent Math, 1988, 93: 35−76

DOI

14
Zhang Y, Wu F, Liu L, Chen H X. Grothendieck groups of a class of quantum doubles. Algebra Colloq, 2008, 15: 431−448

DOI

Outlines

/