Frontiers of Mathematics in China >
Hopf *-algebra structures on H(1, q)
Received date: 05 Sep 2014
Accepted date: 03 Dec 2014
Published date: 12 Oct 2015
Copyright
We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over . It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.
Key words: *-Structure; antilinear map; Hopf *-algebra
Hassen Suleman Esmael MOHAMMED , Tongtong LI , Huixiang CHEN . Hopf *-algebra structures on H(1, q)[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1415 -1432 . DOI: 10.1007/s11464-015-0454-2
1 |
Chen H X. A class of noncommutative and noncocommutative Hopf algebras—the quantum version. Comm Algebra, 1999, 27: 5011−5023
|
2 |
Chen H X. Irreducible representations of a class of quantum doubles. J Algebra, 2000, 225: 391−409
|
3 |
Chen H X. Finite-dimensional representations of a quantum double. J Algebra, 2002, 251: 751−789
|
4 |
Chen H X. Representations of a class of Drinfeld’s doubles. Comm Algebra, 2005, 33: 2809−2825
|
5 |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
|
6 |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
|
7 |
Masuda T, Mimachi K, Nagakami Y, Noumi M, Saburi Y, Ueno K. Unitary representations of the quantum group SUq(1.1): Structure of the dual space of Uq(sl(2)). Lett Math Phys, 1990, 19: 187−194
|
8 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
|
9 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
10 |
Wang Z, Chen H X. Generic modules over a class of Drinfeld’s quantum doubles. Comm Algebra, 2008, 36: 3730−3749
|
11 |
Woronowicz S L. Compact matrix pseudo-groups. Comm Math Phys, 1987, 111: 613−665
|
12 |
Woronowicz S L. Twisted SU(N) group. An example of non-commutative differential calculus. Publ Res Inst Math Sci, 1987, 23: 117−181
|
13 |
Woronowicz S L. Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU(N) groups. Invent Math, 1988, 93: 35−76
|
14 |
Zhang Y, Wu F, Liu L, Chen H X. Grothendieck groups of a class of quantum doubles. Algebra Colloq, 2008, 15: 431−448
|
/
〈 | 〉 |