RESEARCH ARTICLE

Hom-Malcev superalgebras

  • Jizhu NAN 1 ,
  • Chunyue WANG 1,2 ,
  • Qingcheng ZHANG , 3
Expand
  • 1. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
  • 2. School of Applied Sciences, Jilin Teachers’ Institute of Engineering and Technology, Changchun 130052, China
  • 3. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Received date: 23 Nov 2013

Accepted date: 23 Dec 2013

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Hom-Malcev superalgebras can be considered as a deformation of Malcev superalgebras. We give the definition of Hom-Malcev superalgebras. Moreover, we characterize the Hom-Malcev operator and the representation of Hom-Malcev superalgebras. Finally, we study the central extension and the double extension of Hom-Malcev superalgebras.

Cite this article

Jizhu NAN , Chunyue WANG , Qingcheng ZHANG . Hom-Malcev superalgebras[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 567 -584 . DOI: 10.1007/s11464-014-0351-0

1
AlbuquerqueH. A classification of Malcev superalgebras of small dimensions. Algebra Logic, 1996, 35(6): 351-365

DOI

2
AlbuquerqueH, BenayadiS. Quadratic Malcev superalgebras. J Pure Appl Algebra, 2004, 187(1): 19-45

DOI

3
AlbuquerqueH, ElduqueA. Malcev superalgebras with trivial nucleus. Comm Algebra, 1993, 21(9): 3147-3164

DOI

4
AlbuquerqueH, ElduqueA. Engel’s theorem for Malcev superalgebras. Comm Algebra, 1994, 22(14): 5689-5701

DOI

5
AlbuquerqueH, BarreiroE, BenayadiS. Quadratic Malcev superalgebras with reductive even part. Comm Algebra, 2010, 38(2): 785-797

DOI

6
AmmarF, MakhloufA. Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J Algebra, 2010, 324(7): 1513-1528

DOI

7
ElduqueA. On a class of Malcev superalgebras. J Algebra, 1995, 173(2): 237-252

DOI

8
ElduqueA, ShestakovI P. Irreducible non-Lie modules for Malcev superalgebras. J Algebra, 1995, 173(3): 622-637

DOI

9
ElhamdadiM, MakhloufA. Deformations of Hom-Alternative and Hom-Malcev algebras. Algebras Groups Geom, 2011, 28(2): 117-145

10
HartwingJ, LarssonD, SilvestrovS. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295(2): 314-361

DOI

11
JinQ Q, LiX C. Hom-Lie algebra structures on semi-simple Lie algebras. J Algebra, 2008, 319(4): 1398-1408

DOI

12
LarssonD, SilvestrovD. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J Algebra, 2005, 288(2): 321-344

DOI

13
ShengY H. Representions of hom-Lie algebras. Algebr Represent Theory, 2012, 5(6): 1081-1098

DOI

14
ShestakovI P, ElduqueA. Prime non-Lie modules for Mal’tsev superalgebras. Algebra Logika, 1994, 33(4): 448-465

DOI

15
ShestakovI P. Prime Mal’tsev superalgebras. Mat Sb, 1991, 182(9): 1357-1366

16
ShestakovI P, ZhukavetsN. Speciality of Malcev superalgebras on one odd generator. J Algebra, 2006, 301(2): 587-600

DOI

17
YauD. Hom-Maltsev, Hom-alternative and Hom-Jordan algebras. Int Electron J Algebra, 2012, 11: 177-217

18
YuanJ X, SunL P, LiuW D. Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields. arXiv: 1304.5616

Outlines

/