REVIEW ARTICLE

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade

  • Yunxia GAO 1 ,
  • Lei WANG 1 ,
  • Haiyan LI 1 ,
  • Jing LIU , 1,2
Expand
  • 1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 02 Jun 2013

Accepted date: 06 Sep 2013

Published date: 05 Mar 2014

Copyright

2013 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

Cite this article

Yunxia GAO , Lei WANG , Haiyan LI , Jing LIU . Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Frontiers in Energy, 2014 , 8(1) : 49 -61 . DOI: 10.1007/s11708-013-0285-3

Acknowledgments

This work was supported in part by the China Postdoctoral Science Foundation (No. 2012M510561).
1
Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235 −238

DOI PMID

2
Arik M, Becker C, Weaver S, Petroski J. Thermal management of LEDs: package to system. In: 3rd International Conference on Solid State Lighting. San Diego, CA, 2003, 64 −75

3
Tzuk Y, Tal A, Goldring S, Glick Y, Lebiush E, Kaufman G, Lavi R. Diamond cooling of high-power diode-pumped solid-state lasers. IEEE Journal of Quantum Electronics, 2004, 40(3): 262−269

DOI

4
Strassberg D. Cooling hot microprocessors. EDN (European Edition), 1994, 39: 40−48

5
Lundquist C, Carey V P. Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Proceedings of the 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2001, 168−173

6
Xie H, Ali A, Bhatia R. Use of heat pipes in personal computers. In: Proceedings of the Intersociety Conference—Thermo Mechanical Phenomena in Electronic Systems. Seattle, USA, 1998, 442−448

7
Nquyen T, Mochizuki M, Mashiko K, Saito Y, Sauciuc I. Use of heat pipe/heat sink for thermal management of high performance CPUs. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2000, 76−79

8
Rao W, Zhou Y X, Liu J, Deng Z S, Ma K Q, Xiang S H. Vapor-compression-refrigerator enabled thermal management of high performance computer. International Congress of Refrigeration, Beijing, China, 2007

9
Amon C, Murthy J, Yao S C, Narumanchi S, Wu C F, Hsieh C C. MEMS-enabled thermal management of high-heat-flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science, 2001, 25(5): 231−242

DOI

10
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, 2(5): 126−129

DOI

11
Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384−402

DOI

12
Deng Y G, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer, 2010, 46(11−12): 1327−1334

DOI

13
Deng Y G, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. International Communications in Heat and Mass Transfer, 2010, 37(7): 788−791

DOI

14
Ma K Q, Liu J, Xiang S H, Xie K W, Zhou Y X. Study of thawing behavior of liquid metal used as computer chip coolant. International Journal of Thermal Sciences, 2009, 48(5): 964−974

DOI

15
Dai D, Zhou Y, Liu J. Liquid metal based thermoelectric generation system for waste heat recovery. Renewable Energy, 2011, 36(12): 3530−3536

DOI

16
Deng Y G, Liu J. Heat spreader based on room-temperature liquid metal. ASME Journal of Thermal Science and Engineering Applications, 2012, 4(2): 024501

DOI

17
Li P P, Liu J. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Applied Physics Letters, 2011, 99(9): 094106–3

DOI

18
Liu J, Zhou Y X. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent 02131419.5. 2002

19
Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. ASME Journal of Electronic Packaging, 2010, 132(3): 031009

DOI

20
Ryall J. Space probe set to “collide” with earth to simulate approaching asteroid. 2009-06-11

21
Weinberger S. Lockheed trumps boeing for new GPS. 2008-05-16

22
Coppinger R. ESA’s manned ARV team despondent over cash.

23
THERMACORE. Satellite thermal control: unique products for unique challenges. 2013-05-26

24
Zuo Z J, North M T, Wert K L. High heat flux heat pipe mechanism for cooling of electronics. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 220−225

DOI

25
Haws J. Short E. Method and apparatus for cooling with phase change materials and heat pipes. European Patent 00965034.2–2220–US0025297. 2002

26
Meyer L, Dasgupta S, Shaddock D, Tucker J. Fillion R. A silicon-carbide micro-capillary pumped loop for cooling high power devices. In: 9th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management. Austin, USA, 1993, 364−368

27
Butler D, Ku J. Swanson T. Loop heat pipes and capilary pump loops—an application perspective. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 49−56

28
Golliher E L. Microscale technology electronics cooling overview. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 250−257

29
Ohadi M, Qi J. Thermal management of harsh environment electronics. Microscale Heat Transfer Fundamentals and Applications, 2005, 193: 479−498

DOI

30
Heffington S N, Black W Z, Glezer A. Vibration-induced droplet atomization heat transfer cell for high-heat flux dissipation. Thermal Challenges in Next Generation Electronic Systems (THERMES-2002). Santa Fe, USA, 2002

31
Fan X, Zeng G, LaBounty C, Croke E, Vashaee D, Shakouri A, Ahn C, Bowers J E. High cooling power density SiGe/Si micro coolers. Electronics Letters, 2001, 37(2): 126−127

DOI

32
Zimm C, Jastrab A, Sternberg A, Pecharsky V Jr, Gschneidner K, Osborne M, Anderson I. Description and performance of a near-room temperature magnetic refrigerator. Advances in Cryogenic Engineering, 1998, 43: 1759−1766

33
Swfit G W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York: Acoustical Society of America (ASA) Publications, 2002

34
Dawson V P, Bowles M D. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket 1958−2002. Washington, DC: NASA Office of External Relations, 2004

35
Kwon D W, Sedwick R J. Cryogenic heat pipe for cooling high temperature superconductors. Cryogenics, 2009, 49(9): 514−523

DOI

36
Purvis T, Vaughn J M, Rogers T L, Chen X, Overhoff K A, Sinswat P, Hu J, McConville J T, Johnston K P, Williams R O 3rd. Cryogenic liquids, nanoparticles, and microencapsulation. International Journal of Pharmaceutics, 2006, 324(1): 43−50

DOI PMID

37
Yildiz Y, Nalbant M. A review of cryogenic cooling in machining processes. International Journal of Machine Tools & Manufacture, 2008, 48(9): 947−964

DOI

38
Hong S Y. Economical and ecological cryogenic machining. Journal of Manufacturing Science and Engineering, 2001, 123(2): 331−338

DOI

39
Pacio J C, Dorao C A. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 2011, 51(7): 366−379

DOI

40
Gorla R S R. Rapid calculation procedure to determine the pressurizing period for stored cryogenic fluids. Applied Thermal Engineering, 2010, 30(14−15): 1997−2002

DOI

41
Liu J. Development of new generation miniaturized chip-cooling device using metal with low melting point or its alloy as the cooling fluid. In: Proceedings of the International Conference on Micro Energy Systems. Sanya, China, 2005, 89−97

42
Smither R K. Liquid metal cooling of synchrotron optics. In: Society of Photo-Optical Instrumentation Engineers (SPIE) International Symposium on Optical Applied Science and Engineering, San Diego, USA, 1992, 116−134

43
Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993

44
Shimoji M. Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State. New York: Academic Press, 1977

45
Karcher C, Kocourek V, Schulze D. Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop. In: International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany, 2003, 105−110

46
Wikipedia. NaK. 2013-05-26

47
Bradhurst D H, Buchanan A S. Surface properties of liquid sodium and sodium potassium alloys in contact with metal-oxide surfaces. Australian Journal of Chemistry, 1961, 14(3): 397−408

DOI

48
Chu K Y. Sodium loses its luster: A liquid metal that's not really metallic.

49
Wikipedia. Mercury (element). 2013-05-26

50
Senese F. Why is mercury a liquid at STP? 2013-05-26

51
Norrby L J. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? Journal of Chemical Education, 1991, 68(2): 110−113

DOI

52
Lide D R. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. 2005, 4.125−4.126

53
MDCH. Mercury and Your Health.

54
Lovegrove R. Artemide Mercury Suspension. 2013-05-26

55
Dental Amalgam P E I. 2013-05-26

56
Vargel C, Jacques M, Schmidt M P. Corrosion of Aluminium. Elsevier, 2004, 158

57
Anderson T J, Ansara I. The Ga-Sn (Gallium-Tin) system. Journal of Phase Equilibria, 1992, 13(2): 181−189

DOI

58
Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry, 2005, 383(6): 1009−1013

DOI PMID

59
Ghoshal U, Grimm D, Ibrani S, Johnston C, Miner A. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2005, 16−19

60
Liu G Y, Tan H D. Gallium and gallium compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials. Beijing: Chemical Industry Press, 1994, 329−335(in Chinese)

61
Schormann M, Klimek K S, Hatop H, Varkey S P, Roesky H W, Lehmann C, Röpken C, Herbst-Irmer R, Noltemeyer M. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. Journal of Solid State Chemistry, 2001, 162(2): 225−236

DOI

62
Li H Y, Liu J. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Frontiers in Energy, 2011, 5(1): 20−42

DOI

63
Kagan D N, Krechetova G A, Shpilrain E E. Elaborating and applying a new method of Gibbs energy determination for multicomponent alkali-metal coolants. Journal of Physics: Conference Series, 2008, 98(3): 032007

DOI

64
EnviroReporter.com. SSFL Area IV-SNAP. 2013-05-27

65
Dyson R W, Penswick B, Robbie M, Geng S M. Investigation of liquid metal heat exchanger designs for fission surface power. In: Sixth International Energy Conversion Engineering Conference (IECEC). Cleveland, USA, 2008, 1−6

66
Klinkrad H. Space Debris: Models and Risk Analysis. Springer, 2006, 83

67
Xie K W. Study on the liquid metal cooling method for thermal management of computer. Dissertation for the Master′s Degree. Beijing: the Chinese Academy of Science, 2009: 58−76

68
Butler H. Danamics LMX Superleggera Cooler Review. 2013-05-28

69
Oshe R W. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Oxford. UK: Blackwell Scientific Publications Ltd, 1985, 987

70
Wikipedia. Fusible alloy. 2013-05-28

71
Rinck E. Diagram of solidification and electric conductivityof the potassium-cesium alloys. Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Science, 1936, 203: 255−257

72
Shmueli U, Steinberg V, Sverbilova T, Voronel A. New crystalline phases of an equiatomic K-Cs alloy at low temperature. Journal of Physics and Chemistry of Solids, 1981, 42(1): 19−22

DOI

73
Simon A, Brumer W, Hillenkotter B, Kullmann H J. Novel compounds between potassium and cesium. Zeitschrift fur Anorganische und Allgemeine Chemie, 1976, 419: 253−274

DOI

74
Ren X, Li C R, Du Z M, Guo C P. Thermodynamic assessments of six binary systems of alkali metals. Calphad, 2011, 35(3): 446−454

DOI

75
Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams—A Comprehensive Guide. Elsevier Science Ltd., 1998

76
Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams. New York: Academic Press, 1970

77
Wikipedia. Eutectic system. 2013-05-28

78
Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid-Fetzer R. Development of Mg-Sc-Mn alloys. Materials Science and Engineering A, 1999, 263(1): 1−7

DOI

79
Grobner J, Schmid-Fetzer R. Selection of promising quaternary candidates from Mg–Mn–(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys. Journal of Alloys and Compounds, 2001, 320(2): 296−301

DOI

80
Ohno M, Mirkovic D, Schmid-Fetzer R. Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Materials Science and Engineering A, 2006, 421(1−2): 328−337

DOI

81
Tang R Z, Tian R Z. Binary eutectic phase diagram and the crystal structures of intermediate phase. Changsha:Zhongnan University Press, 2009, 736 (in Chinese)

82
Newhouse W H, Hagner A F, Devore G W. Structural control in the formation of gneisses and metamorphic rocks. Science, 1949, 109(2825): 168−169

DOI PMID

83
Wang L, Liu J. Discontinuous structural phase transition of liquid metal and alloys. Physics Letters [Part A], 2004, 328(2−3): 241−245

DOI

84
Zhang Y N, Wang L, Wang W M, Zhou J K. Structural transition of sheared-liquid metal in quenching state. Physics Letters [Part A], 2006, 355(2): 142−147

DOI

85
Prabhu K N, Ravishankar B N. Effect of modification metal treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A, 2003, 360(1−2): 293−298

DOI

86
Shim J H, Lee S C, Lee B J, Suh J Y, Cho Y W. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth, 2003, 250(3−4): 558−564

DOI

87
Li H, Bian X F, Wang G H. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Materials Science and Engineering A, 2001, 298(1−2): 245−250

DOI

88
Chen X S, Zhao J J, Sun Q, Liu F, Wang G, Shen X C. Surface thermal stability of nickel clusters. Physica Status Solidi. B, Basic Research, 1996, 193(2): 355−361

DOI

89
Hattori T, Kinoshita T, Taga N, Takasugi Y, Mori T, Tsuji K. Pressure and temperature dependence of the structure of liquid InSb. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(6): 064205

DOI

90
Turnbull D. The Subcooling of liquid metals. Journal of Applied Physics, 1949, 20(8): 817

DOI

91
Li T, Lv Y G, Liu J, Zhou Y X. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung im Ingenieurwesen, 2005, 70(4): 243−251

DOI

92
Liu Z, Bando Y, Mitome M, Zhan J H. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Physical Review Letters, 2004, 93(9): 095504

DOI PMID

93
Platzek D. Liquid metal undercooled below its Curie temperature. Physical Review Letters, 1994, 65(13): 1723−1724

94
Wei B B, Yang G C, Zhon Y H. High undercooling and rapid solidification of Ni 32.5%Sn eutectic alloy. Acta Metallurgica et Materialia, 1991, 39(6): 1249−1258

DOI

95
Liu R P, Volkraann T, Herlach D M. Undereooling and solidification of Si by electromagnetic levitation. Acta Materialia, 2001, 49(3): 439−444

DOI

96
Hofmeister W H, Robinson M B, Bayuzick R J. Undercooling of pure metals in a containerless, microgravity environment. Applied Physics Letters, 1986, 49(20): 1342−1344

DOI

97
Bosio L, Windsor C G. Observation of a metastability limit in liquid gallium. Physical Review Letters, 1975, 35(24): 1652−1655

DOI

98
Cicco A D. Phase transitions in confined gallium droplets. Physical Review Letters, 1998, 81(14): 2942−2945

DOI

99
Parravicini G B, Stella A, Ghignaa P, Spinolo G, Migliori A, d’Acapito F, Kofman R. Extreme undercooling (down to 90 K) of liquid metal nanoparticles. Applied Physics Letters, 2006, 89(3): 033123

DOI

100
Taylor L T, Rancourt J. Non-toxic liquid metal composition for use as a mercury substitute. United States Patent No. 5,792, 236. 1998-08-11

101
Wu Y Y, Liu X F, Liu X J, Bian X F. Effect of Sb, Bi and Fe on melting points and microstructures of eutectic Cu-8P alloys. Chinese Journal of Nonferrous Metals, 2004, 14(7): 1206−1210

102
ARMY. Hermes® 90 UAS unmanned aircraft system. 2013-05-28

103
LOCKHEED MARTIN. IRST sensor system. 2013-06-01

104
NORTHROP GRUMMAN. 2008photo archive.2013-06-01

105
Cortney. China Launches Beidou GPS System, Set to Rival US GPS. 2012-01-03

Outlines

/