Received date: 22 Mar 2023
Accepted date: 25 May 2023
Published date: 15 Oct 2023
Copyright
Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several non-noble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al2O3 catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.
Key words: methane; catalytic conversion; natural gas; hydrogen production; CCUS
Shams ANWAR , Xianguo LI . Production of hydrogen from fossil fuel: A review[J]. Frontiers in Energy, 2023 , 17(5) : 585 -610 . DOI: 10.1007/s11708-023-0886-4
1 |
van Renssen S. The hydrogen solution?. Nature Climate Change, 2020, 10(9): 799–801
|
2 |
Malaika A, Krzyzyńska B, Kozłowski M. Catalytic decomposition of methane in the presence of in situ obtained ethylene as a method of hydrogen production. International Journal of Hydrogen Energy, 2010, 35(14): 7470–7475
|
3 |
Pivovar B S, Ruth M F, Myers D J.
|
4 |
Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis—A review. Materials Science for Energy Technologies, 2019, 2(3): 442–454
|
5 |
Megía P J, Vizcaino A J, Calles J A.
|
6 |
Hosseini S E, Abdul Wahid M, Jamil M M.
|
7 |
Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable & Sustainable Energy Reviews, 2017, 67: 597–611
|
8 |
Solarte-Toro J C, González-Aguirre J A, Poveda Giraldo J A.
|
9 |
Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111
|
10 |
Agyekum E B, Nutakor C, Agwa A M.
|
11 |
Ahmed S F, Mofijur M, Nahrin S N.
|
12 |
Sovacool B K, Schmid P, Stirling A.
|
13 |
Anwar S, Khan F, Zhang Y.
|
14 |
Sebbahi S, Nabil N, Alaoui-Belghiti A.
|
15 |
Chatenet M, Bruno G, Pollet D R.
|
16 |
Nnabuife S G, Ugbeh-Johnson J, Okeke N E.
|
17 |
Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 2014, 39(1): 1–12
|
18 |
Rand D A J. A journey on the electrochemical road to sustainability. Journal of Solid State Electrochemistry, 2011, 15(7–8): 1579–1622
|
19 |
Cipriani G, Di Dio V, Genduso F.
|
20 |
van de LoosdrechtJNiemantsverdrietJ W. Synthesis gas to hydrogen, methanol, and synthetic fuels. In: Schlögl R, ed. Chemical Energy Storage. Boston: De Gruyter, 2013, 443–458
|
21 |
Balat M, Balat M. Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 2009, 34(9): 3589–3603
|
22 |
Koumi Ngoh S, Njomo D. An overview of hydrogen gas production from solar energy. Renewable & Sustainable Energy Reviews, 2012, 16(9): 6782–6792
|
23 |
Karchiyappan T. A review on hydrogen energy production from electrochemical system: Benefits and challenges. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2019, 41(7): 902–909
|
24 |
TheInternational Energy Agency. Global hydrogen review 2022. 2023-6-28, available at website of IEA
|
25 |
NaturalResources Canada. Hydrogen strategy of Canada: Seizing the opportunities for hydrogen. 2023-6-28, available at website of Government of Canada
|
26 |
TheInternational Renewable Energy Agency. Global energy transformation: A roadmap to 2050. 2023-6-28, available at website of IRENA
|
27 |
FranceHydrogène. Hydrogen scaling up: A sustainable pathway for the global energy transition. 2023-6-28, available at website of France Hydrogène
|
28 |
EnergyTransitions Commission. Mission possible: Reaching net-zero carbon emissions from harder-to-abate sectors. 2023-6-28, available at website of Energy Transitions Commission
|
29 |
Muradov N Z. How to produce hydrogen from fossil fuels without CO2 emission. International Journal of Hydrogen Energy, 1993, 18(3): 211–215
|
30 |
InternationalEnergy Agency. Net zero by 2050: A roadmap for the global energy sector. 2023-6-28, available at website of IEA
|
31 |
Khan M A, Zhao H, Zou W.
|
32 |
Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 2018, 39(3): 390–394
|
33 |
Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010, 36(3): 307–326
|
34 |
Achten W M J, Verchot L, Franken Y J.
|
35 |
Milazzo M F, Spina F, Primerano P.
|
36 |
Ahmed A, Al-Amin A Q, Ambrose A F.
|
37 |
Pinsky R, Sabharwall P, Hartvigsen J.
|
38 |
Lee B, Heo J, Kim S.
|
39 |
Collodi G, Azzaro G, Ferrari N.
|
40 |
Leal Pérez B J, Medrano Jiménez J A, Bhardwaj R.
|
41 |
Rudolph C, Atakan B. Pyrolysis of methane and ethane in a compression–expansion process as a new concept for chemical energy storage: A kinetic and exergetic investigation. Energy Technology (Weinheim), 2021, 9(3): 2000948
|
42 |
Palmer C, Bunyan E, Gelinas J.
|
43 |
Fakeeha A, Ibrahim A A, Aljuraywi H.
|
44 |
Huang H K, Chih Y K, Chen W H.
|
45 |
Żukowski W, Berkowicz G. Hydrogen production through the partial oxidation of methanol using N2O in a fluidised bed of an iron-chromium catalyst. International Journal of Hydrogen Energy, 2017, 42(47): 28247–28253
|
46 |
Abdul Ghani A, Torabi F, Ibrahim H. Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses. Energy, 2018, 144: 129–145
|
47 |
Matus E V, Ismagilov I Z, Yashnik S A.
|
48 |
Matus E, Sukhova O, Ismagilov I.
|
49 |
Noh Y S, Lee K Y, Moon D J. Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. International Journal of Hydrogen Energy, 2019, 44(38): 21010–21019
|
50 |
Lima D S, Calgaro C O, Perez-Lopez O W. Hydrogen production by glycerol steam reforming over Ni based catalysts prepared by different methods. Biomass and Bioenergy, 2019, 130: 105358
|
51 |
Zeng Z, Liu G, Geng J.
|
52 |
Schneider S, Bajohr S, Graf F.
|
53 |
Bhaskar A, Assadi M, Somehsaraei H N. Can methane pyrolysis based hydrogen production lead to the decarbonisation of iron and steel industry?. Energy Conversion and Management: X, 2021, 10: 100079
|
54 |
Parkinson B, Balcombe P, Speirs J F.
|
55 |
Ahmed S F, Mofijur M, Nuzhat S.
|
56 |
Djimasbe R, Ilyasov I R, Kwofie M.
|
57 |
Kertthong T, Schmid M, Scheffknecht G. Non-catalytic partial oxidation of methane in biomass-derived syngas with high steam and hydrogen content optimal for subsequent synthesis process. Journal of Energy Institute, 2022, 105: 251–261
|
58 |
Kim J, Byeon J, Seo I G.
|
59 |
Lian Z, Wang Y, Zhang X.
|
60 |
Nam H, Wang S, Sanjeev K C.
|
61 |
Yaghoubi E, Xiong Q, Doranehgard M H.
|
62 |
Hanchate N, Malhotra R, Mathpati C S. Design of experiments and analysis of dual fluidized bed gasifier for syngas production: Cold flow studies. International Journal of Hydrogen Energy, 2021, 46(6): 4776–4787
|
63 |
Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020, 45(7): 3847–3869
|
64 |
Amiri T Y, Ghasemzageh K, Iulianelli A. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering and Processing, 2020, 157: 108148
|
65 |
Poirier M G, Sapundzhiev C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications. International Journal of Hydrogen Energy, 1997, 22(4): 429–433
|
66 |
Surer M G, Arat H T. State of art of hydrogen usage as a fuel on aviation. European Mechanical Science, 2018, 2(1): 20–30
|
67 |
Zhang H, Sun Z, Hu Y H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renewable & Sustainable Energy Reviews, 2021, 149: 111330
|
68 |
BPEnergy Economics. BP energy outlook 2019 edition. 2023-6-28, available at website of BP
|
69 |
Ashik U P M, Wan Daud W M A, Abbas H F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review. Renewable & Sustainable Energy Reviews, 2015, 44: 221–256
|
70 |
Chen L, Qi Z, Zhang S.
|
71 |
Mahajan D, Taylor C E, Mansoori G A. An introduction to natural gas hydrate/clathrate: The major organic carbon reserve of the Earth. Journal of Petroleum Science Engineering, 2007, 56(1–3): 1–8
|
72 |
Simpson A P, Lutz A E. Exergy analysis of hydrogen production via steam methane reforming. International Journal of Hydrogen Energy, 2007, 32(18): 4811–4820
|
73 |
Iulianelli A, Liguori S, Wilcox J.
|
74 |
Barelli L, Bidini G, Gallorini F.
|
75 |
Wilhelm D J, Simbeck D R, Karp A D.
|
76 |
Rouwenhorst K H R, Engelmann Y, van’t Veer K.
|
77 |
Adris A M, Pruden B B, Lim C J.
|
78 |
Tuza P V, Souza M M V M. Steam reforming of methane over catalyst derived from ordered double perovskite: Effect of crystalline phase transformation. Catalysis Letters, 2016, 146(1): 47–53
|
79 |
Feio L S F, Hori C E, Damyanova S.
|
80 |
Zhang L, Roling L T, Wang X.
|
81 |
Qiao B, Wang A, Yang X.
|
82 |
Sun P, Young B, Elgowainy A.
|
83 |
Bobrova I I, Bobrov N N, Chesnokov V V.
|
84 |
Tomishige K, Li D, Tamura M.
|
85 |
Soloviev S O, Gubareni I V, Orlyk S M. Oxidative reforming of methane on structured nickel–alumina catalysts: A review. Theoretical and Experimental Chemistry, 2018, 54(5): 293–315
|
86 |
Li D, Nakagawa Y, Tomishige K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A, General, 2011, 408(1−2): 1–24
|
87 |
Msheik M, Rodat S, Abanades S. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis. Energies, 2021, 14(11): 3107
|
88 |
Meloni E, Martino M, Palma V. A short review on Ni-based catalysts and related engineering issues for methane steam reforming. Catalysts, 2020, 10(3): 352
|
89 |
Summa P, Samojeden B, Motak M. Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review. Polish Journal of Chemical Technology, 2019, 21(2): 31–37
|
90 |
Christofoletti T, Assaf J M, Assaf E M. Methane steam reforming on supported and non-supported molybdenum carbides. Chemical Engineering Journal, 2005, 106(2): 97–103
|
91 |
Watanabe F, Kaburaki I, Shimoda N.
|
92 |
Maestri M, Vlachos D G, Beretta A.
|
93 |
Fan C, Zhu Y A, Yang M L.
|
94 |
Kathiraser Y, Oemar U, Saw E T.
|
95 |
Wang Z, Cao X M, Zhu J.
|
96 |
Niu J, Guo F, Ran J.
|
97 |
Fujimoto Y, Ohba T. Size-dependent catalytic hydrogen production via methane decomposition and aromatization at a low-temperature using Co, Ni, Cu, Mo, and Ru nanometals. Physical Chemistry Chemical Physics, 2022, 24(47): 28794–28803
|
98 |
Hasnan N S N, Timmiati S N, Lim K L.
|
99 |
Gonçalves J F, Souza M M V M. Effect of doping niobia over Ni/Al2O3 catalysts for methane steam reforming. Catalysis Letters, 2018, 148(5): 1478–1489
|
100 |
Lertwittayanon K, Youravong W, Lau W J. Enhanced catalytic performance of Ni/A-Al2O3 catalyst modified with CaZrO3 nanoparticles in steam-methane reforming. International Journal of Hydrogen Energy, 2017, 42(47): 28254–28265
|
101 |
Xu J, Chen L, Tan K F.
|
102 |
Barati Dalenjan M, Rashidi A, Khorasheh F.
|
103 |
Hu Y H. Solid-solution catalysts for CO2 reforming of methane. Catalysis Today, 2009, 148(3−4): 206–211
|
104 |
Park Y S, Kang M, Byeon P.
|
105 |
Dehghan-Niri R, Walmsley J C, Holmen A.
|
106 |
Zhai X, Ding S, Liu Z.
|
107 |
Li J, Zhu Q, Peng W.
|
108 |
Do J Y, Chava R, Son N.
|
109 |
Lee S Y, Lim H, Woo H C. Catalytic activity and characterizations of Ni/K2TixOy-Al2O3 catalyst for steam methane reforming. International Journal of Hydrogen Energy, 2014, 39(31): 17645–17655
|
110 |
Roh H S, Eum I H, Jeong D W. Low temperature steam reforming of methane over Ni-Ce1–xZrxO2 catalysts under severe conditions. Renewable Energy, 2012, 42: 212–216
|
111 |
Takehira K, Shishido T, Wang P.
|
112 |
Morales-Cano F, Lundegaard L F, Tiruvalam R R.
|
113 |
Yang X, Da J, Yu H.
|
114 |
Fukuhara C, Yamamoto K, Makiyama Y.
|
115 |
You X, Wang X, Ma Y.
|
116 |
Miura S, Umemura Y, Shiratori Y.
|
117 |
Katheria S, Gupta A, Deo G.
|
118 |
Jiménez-González C, Boukha Z, De Rivas B.
|
119 |
Zhang Y, Wang W, Wang Z.
|
120 |
Kho E T, Scott J, Amal R. Ni/TiO2 for low temperature steam reforming of methane. Chemical Engineering Science, 2016, 140: 161–170
|
121 |
Bej B, Pradhan N C, Neogi S. Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today, 2013, 207: 28–35
|
122 |
Ma Y, Wang X, You X.
|
123 |
Fang X, Zhang X, Guo Y.
|
124 |
Zhang X, Peng L, Fang X.
|
125 |
Palma S, Bobadilla L F, Corrales A.
|
126 |
Lian J, Fang X, Liu W.
|
127 |
Angeli S D, Turchetti L, Monteleone G.
|
128 |
Homsi D, Aouad S, Gennequin C.
|
129 |
Itkulova S S, Boleubayev Y A, Valishevskiy K A. Multicomponent Co-based sol–gel catalysts for dry/steam reforming of methane. Journal of Sol-Gel Science and Technology, 2019, 92(2): 331–341
|
130 |
Profeti L P R, Ticianelli E A, Assaf E M. Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel, 2008, 87(10−11): 2076–2081
|
131 |
Lucrédio A F, Filho G T, Assaf E M. Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions. Applied Surface Science, 2009, 255(11): 5851–5856
|
132 |
Lucrédio A F, Assaf E M. Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming. Journal of Power Sources, 2006, 159(1): 667–672
|
133 |
Narkiewicz U, Podsiadły M, Jȩdrzejewski R.
|
134 |
Brykin A V, Artemov A V, Kolegov K A. Analysis of the market of rare-earth elements (REEs) and REE catalysts. Catalysis in Industry, 2014, 6(1): 1–7
|
135 |
Avdeeva L B, Kochubey D I, Shaikhutdinov S K. Cobalt catalysts of methane decomposition: Accumulation of the filamentous carbon. Applied Catalysis A, General, 1999, 177(1): 43–51
|
136 |
Abdelbaki Y, de Arriba A, Solsona B.
|
137 |
Italiano G, Delia A, Espro C.
|
138 |
Awadallah A E, Aboul-Enein A A, Aboul-Gheit A K. Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes. Fuel, 2014, 129: 27–36
|
139 |
Nazari M, Alavi S M. An investigation of the simultaneous presence of Cu and Zn in different Ni/Al2O3 catalyst loads using Taguchi design of experiment in steam reforming of methane. International Journal of Hydrogen Energy, 2020, 45(1): 691–702
|
140 |
Sajjadi S M, Haghighi M, Eslami A A.
|
141 |
Bayat N, Meshkani F, Rezaei M. Thermocatalytic decomposition of methane to COx-free hydrogen and carbon over Ni–Fe–Cu/Al2O3 catalysts. International Journal of Hydrogen Energy, 2016, 41(30): 13039–13049
|
142 |
Saraswat S K, Pant K K. Synthesis of hydrogen and carbon nanotubes over copper promoted Ni/SiO2 catalyst by thermocatalytic decomposition of methane. Journal of Natural Gas Science and Engineering, 2013, 13: 52–59
|
143 |
Takenaka S, Shigeta Y, Tanabe E.
|
144 |
Chen J, Li X, Li Y.
|
145 |
Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth. Journal of Catalysis, 1997, 169(1): 240–249
|
146 |
Rahman M S, Croiset E, Hudgins R R. Catalytic decomposition of methane for hydrogen production. Topics in Catalysis, 2006, 37(2–4): 137–145
|
147 |
Wang S, Nabavi S A, Clough P T. A review on bi/polymetallic catalysts for steam methane reforming. International Journal of Hydrogen Energy, 2023, 48(42): 15879–15893
|
148 |
Ali Khan M H, Daiyan R, Neal P.
|
149 |
TheInternational Energy Agency. The future of hydrogen. 2023-6-28, available at website of IEA
|
150 |
Soltani R, Rosen M A, Dincer I. Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39(35): 20266–20275
|
151 |
PowerGBusseAMacMurrayJ. Demonstration of carbon capture and sequestration of steam methane reforming process gas used for large-scale hydrogen production. USDOE Technical Report 1437618, 2018
|
152 |
Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture. International Journal of Hydrogen Energy, 2016, 41(9): 4969–4992
|
153 |
Wiheeb A D, Helwani Z, Kim J.
|
154 |
Pires J, de Carvalho M B, Ribeiro F R.
|
155 |
Yang S, Choi D Y, Jang S C.
|
156 |
Gomes V G, Yee K W K. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 2002, 28(2): 161–171
|
157 |
Chou C T, Chen C Y. Carbon dioxide recovery by vacuum swing adsorption. Separation and Purification Technology, 2004, 39(1−2): 51–65
|
158 |
Othman M R, Tan S C, Bhatia S. Separability of carbon dioxide from methane using MFI zeolite-silica film deposited on gamma-alumina support. Microporous and Mesoporous Materials, 2009, 121(1−3): 138–144
|
159 |
Sebastián V, Kumakiri I, Bredesen R.
|
160 |
Aroua M K, Daud W M A W, Yin C Y.
|
161 |
Riboldi L, Bolland O. Overview on pressure swing adsorption (PSA) as CO2 capture technology: State-of-the-art, limits and potentials. Energy Procedia, 2017, 114: 2390–2400
|
162 |
Harlick P J E, Tezel F H. An experimental adsorbent screening study for CO2 removal from N2. Microporous and Mesoporous Materials, 2004, 76(1−3): 71–79
|
163 |
Liu Z, Grande C A, Li P.
|
164 |
Merel J, Clausse M, Meunier F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Industrial & Engineering Chemistry Research, 2008, 47(1): 209–215
|
165 |
Sumida K, Rogow D L, Mason J A.
|
166 |
Casas N, Schell J, Blom R.
|
167 |
Reynolds S P, Ebner A D, Ritter J A. Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent. Industrial & Engineering Chemistry Research, 2006, 45(12): 4278–4294
|
168 |
SircarSGoldenT C. Pressure swing adsorption technology for hydrogen production. In: Liu K, Song C, Subramani V, eds. Hydrogen and Syngas Production and Purification Technologies. New Jersey: John Wiley & Sons, Inc., 2009, 414–450
|
169 |
Ritter J A, Ebner A D. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Separation Science and Technology, 2007, 42(6): 1123–1193
|
170 |
KohlA LNielsenR B. Introduction. In: Kohl A L, Nielsen R B, eds. Gas Purification. 5th ed. Houston: Gulf Professional Publishing, 1997, 1–39
|
171 |
Hochgesand G D. Rectisol and purisol. Industrial & Engineering Chemistry, 1970, 62: 37–43
|
172 |
Lu G Q, Diniz da Costa J C, Duke M.
|
173 |
Adhikari S, Fernando S. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research, 2006, 45(3): 875–881
|
174 |
Ockwig N W, Nenoff T M. Membranes for hydrogen separation. Chemical Reviews, 2007, 107(10): 4078–4110
|
175 |
Van de Graaf T, Overland I, Scholten D.
|
176 |
GlobalCCS Institute. Global status and CCS report: 2019. 2023-6-28, available at website of Global CCS Institute
|
177 |
Dou B, Wu K, Zhang H.
|
178 |
Ren R, Dou B, Zhang H.
|
179 |
Dou B, Zhang H, Cui G.
|
180 |
Gonzalez-Diaz A, Jiang L, Gonzalez-Diaz M O.
|
181 |
Katebah M, Al-Rawashdeh M, Linke P. Analysis of hydrogen production costs in steam-methane reforming considering integration with electrolysis and CO2 capture. Cleaner Engineering and Technology, 2022, 10: 100552
|
182 |
Meerman J C, Hamborg E S, van Keulen T.
|
183 |
Collodi G. Hydrogen production via steam reforming with CO2 capture. Chemical Engineering Transactions, 2010, 19: 37–42
|
184 |
Yang H, Kaczur J J, Sajjad S D.
|
185 |
Mukherjee A, Okolie J A, Abdelrasoul A.
|
186 |
IrabienAAlvarez-GuerraMAlboJ,
|
187 |
Verma S, Kim B, Jhong H R M.
|
188 |
Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165–2177
|
/
〈 | 〉 |