1 Introduction
2 Depletion simulation and optimized designs of control rod
2.1 Modeling and depletion simulation of control rod
2.2 Optimization design direction
2.3 Innovative control rod designs
2.3.1 Spatially mixed control rods
2.3.2 Radially moderated control rods
2.3.3 Control rod with composite small-sized pins
Tab.1 Detailed dimensions of composite control rods |
Composite control rods | Pin number | Clad radius/cm | Pin absorber radius/cm | Pin material |
---|---|---|---|---|
Absorber pins | 7 | 0.95 | 0.85 | B4C |
37 | 0.45 | 0.35 | ||
127 | 0.23 | 0.2 | ||
Absorber and moderator pins | 6+ 1 | 0.95 | 0.85 | B4C and ZrH2 |
30+ 7 | 0.45 | 0.35 | ||
108+ 19 | 0.23 | 0.2 |
2.4 Optimization carrier
Tab.2 Main design parameters of JRR-3 core [10] |
Parameter | Value |
---|---|
Reactor power/MW | 20 |
Active core height/cm | 75 |
Active core radius/cm | 53 |
Fuel assembly type | Plate |
Fuel plate number | 20 |
Fuel meat material | U2Si3 |
U density/(g·cm‒3) | 3.8 |
235U enrichment | 19.75 |
Absorber thickness/cm | 0.8 |
Meat thickness/cm | 0.076 |
Meat width/cm | 6.16 |
Cladding thickness/cm | 0.038 |
Cladding width/cm | 0.48 |
Moderator gap width/cm | 0.228 |
Control rod type | Hollow frame |
Absorber material | Hf |
Clad thickness/cm | 1 |
Gap in control rod/cm | 0.26 |
3 Results and discussion
3.1 Control rods with different absorbers in axial and radial direction
Tab.3 Neutronic performance of axial partitioned control rod |
Absorber combination | keff | CRW/pcm | EACS/cm‒1 | σ |
---|---|---|---|---|
B4C | 1.038 | 15900 | 1.148E-01 | 8.0E-05 |
B4C and HfH1.3 | 1.032 | 16400 | 1.594E-01 | 7.4E-05 |
B4C and Dy2TiO5 | 1.087 | 11500 | 6.844E-02 | 7.5E-05 |
B4C and Eu2O3 | 1.042 | 15500 | 1.222E-01 | 7.2E-05 |
Tab.4 Burnup performance of radially layered control rods |
Absorber combination | CRW at BOC/pcm | CRW at EOC/pcm | Loss/% | EACS at BOC/cm‒1 | EACS at EOC/cm‒1 | Loss/% |
---|---|---|---|---|---|---|
B4C | 15800 | 12600 | 20.2 | 1.15E‒01 | 8.38E‒02 | 27.0 |
B4C and HfH1.3 | 15400 | 14100 | 8.7 | 1.16E‒01 | 1.01E‒01 | 13.5 |
B4C and Dy2TiO5 | 13400 | 12800 | 4.4 | 8.72E‒02 | 8.03E‒02 | 7.9 |
B4C and Eu2O3 | 15700 | 15000 | 4.4 | 1.22E‒01 | 1.12E‒01 | 8.4 |
3.2 Control rods with a moderator
Tab.5 Neutronic efficiency of different moderated control rods |
Rm/R | keff | σ | CRW/pcm | CRW per unit mass absorber/(pcm·kg‒1) | EACS/cm‒1 |
---|---|---|---|---|---|
0.89 | 1.028 | 7.6E‒05 | 16800 | 33.7 | 8.72E‒02 |
0.71 | 1.020 | 5.4E‒05 | 17600 | 17.6 | 1.00E‒01 |
0.55 | 1.020 | 7.5E‒05 | 17500 | 7 | 1.19E‒01 |
0.32 | 1.026 | 5.5E‒05 | 17000 | 4.9 | 1.22E‒01 |
0 | 1.033 | 8.0E‒05 | 16300 | 3.6 | 1.19E‒01 |
3.3 Control rods with small sized pins
Tab.6 Neutronic performance of control rods with small-sized pins |
Number of pins | Pin type | keff | σ | CRW/pcm | CRW per unit mass absorber/(pcm·kg‒1) | EACS/cm‒1 |
---|---|---|---|---|---|---|
1 | Absorber pin | 1.033 | 8.0E‒05 | 16300 | 3.6 | 1.19E‒01 |
7 | All absorber pins | 1.056 | 7.6E‒05 | 14200 | 4.7 | 8.21E‒02 |
6 absorber pins and 1 moderator pin | 1.053 | 7.3E‒05 | 14500 | 5.6 | 8.34E‒02 | |
37 | All absorber pins | 1.058 | 7.5E‒05 | 14000 | 5.2 | 8.12E‒02 |
30 absorber pins and 7 moderator pins | 1.056 | 7.7E‒05 | 14200 | 6.5 | 8.27E‒02 | |
127 | All absorber pins | 1.051 | 7.8E‒05 | 14600 | 4.8 | 8.61E‒02 |
108 absorber pins and 19 moderator pins | 1.049 | 7.5E‒05 | 14900 | 5.8 | 8.84E‒02 |