RESEARCH ARTICLE

Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production

  • Heba ALI , 1 ,
  • N. ISMAIL 1 ,
  • M. S. AMIN 2 ,
  • Mohamed MEKEWI 3
Expand
  • 1. Physical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
  • 2. Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 12622, Egypt; Chemistry Department, Faculty of Science, Taibah University, Madinah Munawwarah, Saudi Arabia;
  • 3. Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 12622, Egypt

Received date: 11 Mar 2017

Accepted date: 26 May 2017

Published date: 04 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

WO3 decorated photoelectrodes of titanium nanotube arrays (W-oxide TNTAs) were synthesized via a two-step process, namely, electrochemical oxidation of titanium foil and electrodeposition of W-oxide for various interval times of 1, 2, 3, 5, and 20 min to improve the photoelectrochemical performance and the amount of hydrogen generated. The synthesized photoelectrodes were characterized by various characterization techniques. The presence of tungsten in the modified TNTAs was confirmed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM) proved the deposition of W-oxide as small particles staked up on the surface of the tubes at lower deposition time whereas longer times produced large and aggregate particles to mostly cover the surface of TiO2 nanotubes. Additionally, the incorporation of WO3 resulted in a shift of the absorption edge toward visible light as confirmed by UV-Vis diffuse reflectance spectroscopy and a decrease in the estimated band gap energy values hence, modified TNTAs facilitated a more efficient utilization of solar light for water splitting. From the photoelectrochemical measurement data, the optimal photoelectrode produced after 2 min of deposition time improved the photo conversion efficiency and the hydrogen generation by 30% compared to that of the pure TNTA.

Cite this article

Heba ALI , N. ISMAIL , M. S. AMIN , Mohamed MEKEWI . Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production[J]. Frontiers in Energy, 2018 , 12(2) : 249 -258 . DOI: 10.1007/s11708-018-0547-1

Acknowledgments

This work was supported by the Science and Technology Development Fund (STDF) of Egypt (project number 3649).
1
Hunge Y M, Mahadik M A, Moholkar A V, Bhosale C H. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrasonics Sonochemistry, 2017, 35(Pt A): 233–242

DOI PMID

2
Van de Krol R, Grätzel M. Photoelectrochemical Hydrogen Production. New York: Springer, 2012

3
Wydrzynski T J, Hillier W. Molecular Solar Fuels. Cambridge: Royal Society of Chemistry, 2012

4
Archer M D, Nozik A J. Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. London: Imperial College Press, 2008

5
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

DOI PMID

6
Grimes C A, Varghese O K, Ranjan S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. New York: Springer, 2008

7
Bhattacharyya R, Misra A, Sandeep K C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13

DOI

8
Viswanathan B, Subramanian V, Lee J S. Materials and Processes for Solar Fuel Production. New York: Springer, 2014

9
Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry. A, 2016, 4(18): 6772–6801

DOI

10
Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2012, 92: 315–321

DOI PMID

11
Khataee A, Mansoori G A. Nanostructured Materials Titanium Dioxide Properties, Preparation and applications. Singapore: World Scientific, 2012

12
Anpo M, Kamat P V. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials. London: Springer, 2010

13
Momeni M M, Ghayeb Y, Ghonchegi Z. Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surface Engineering, 2016, 32(7): 520–525

DOI

14
Momeni M M, Ghayeb Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. Journal of Alloys and Compounds, 2015, 637: 393–400

DOI

15
Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. Journal of Solid State Electrochemistry, 2016, 20(3): 683–689

DOI

16
Momeni M M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bulletin of Materials Science, 2016, 39(6): 1389–1395

DOI

17
Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry, 2015, 751: 43–48

DOI

18
Momeni M M, Ghayeb Y. Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3318–3327

DOI

19
Ghayeb Y, Momeni M M. Solar water-splitting using palladium modified tungsten trioxide-titania nanotube photocatalysts. Journal of Materials Science Materials in Electronics, 2016, 27(2): 1805–1811

DOI

20
Momeni M M, Ghayeb Y, Ghonchegi Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 2015, 41(7): 8735–8741

DOI

21
Ge M Z, Cao C Y, Li S H, Tang Y X, Wang L N, Qi N, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8(9): 5226–5234

DOI PMID

22
Momeni M M, Ghayeb Y. Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting. Applied Physics. A, Materials Science & Processing, 2016, 122(6): 620

DOI

23
Momeni M M, Ghayeb Y. Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 2015, 45(6): 557–566

DOI

24
Momeni M M, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. Journal of Electroanalytical Chemistry, 2015, 739: 149–155

DOI

25
Ge M Z, Li S H, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry. A, 2015, 3(7): 3491–3499

DOI

26
Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab S S, Lai Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advancement of Science, 2017, 4(1): 1600152

DOI PMID

27
Beydoun D, Amal R, Low G, McEvoy S. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458

DOI

28
Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma G L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A Chemical, 2010, 327(1–2): 51–57

DOI

29
Lee W J, Shinde P S, Go G H, Ramasamy E. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36(9): 5262–5270

DOI

30
Subash B, Krishnakumar B, Pandiyan V, Swaminathan M, Shanthi M. Synthesis and characterization of novel WO3 loaded Ag–ZnO and its photocatalytic activity. Materials Research Bulletin, 2013, 48(1): 63–69

DOI

31
Khare C, Sliozberg K, Meyer R, Savan A, Schuhmann W, Ludwig A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. International Journal of Hydrogen Energy, 2013, 38(36): 15954–15964

DOI

32
Rajeshwar K, McConnell R, Licht S. Solar Hydrogen Generation: Toward a Renewable Energy Future. New York: Springer, 2008

33
Choi T, Kim J S, Kim J H. Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Advanced Powder Technology, 2016, 27(2): 347–353

DOI

34
Dozzi M V, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 2016, 186: 157–165

DOI

35
Srinivasan A, Miyauchi M. Chemically stable WO3 based thin-film for visible light induced oxidation and superhydrophilicity. Journal of Physical Chemistry C, 2012, 116(29): 15421–15426

DOI

36
Souvereyns B, Elen K, De Dobbelaere C, Kelchtermans A, Peys N, D’Haen J, Mertens M, Mullens S, Van den Rul H, Meynen V, Cool P, Hardy A, Van Bael M K. Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles. Chemical Engineering Journal, 2013, 223: 135–144

DOI

37
Somasundaram S, Chenthamarakshan C R, de Tacconi N R, Basit N A, Rajeshwar K. Composite WO3–TiO2 films: pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochemistry Communications, 2006, 8(4): 539–543

DOI

38
Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. Journal of the Electrochemical Society, 1999, 146(1): 243–249

DOI

39
Shiyanovskaya I, Hepel M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. Journal of the Electrochemical Society, 1998, 145(11): 3981–3985

DOI

40
He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao J. Photochromism of WO3 colloids combined with TiO2 nanoparticles. Journal of Physical Chemistry. B, 2002, 106(49): 12670–12676

DOI

41
He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chemistry of Materials, 2003, 15(21): 4039–4045

DOI

42
Paramasivam I, Nah Y C, Das C, Shrestha N K, Schmuki P. WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(30): 8993–8997

DOI PMID

43
Nazari M, Golestani-Fard F, Bayati R, Eftekhari-Yekta B. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes. Superlattices and Microstructures, 2015, 80: 91–101

DOI

44
Momeni M, Ghayeb Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. Journal of Molecular Catalysis. A: Chemical, 2016, 417: 107–115

DOI

45
Zhong M, Zhang G, Yang X. Preparation of Ti mesh supported WO3/TiO2 nanotubes composite and its application for photocatalytic degradation under visible light. Materials Letters, 2015, 145: 216–218

DOI

46
Ali H, Ismail N, Hegazy A, Mekewi M. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochimica Acta, 2014, 150: 314–319

DOI

47
de Tacconi N R, Chenthamarakshan C R, Rajeshwar K, Pauporté T, Lincot D. Pulsed electrodeposition of WO3–TiO2 composite films. Electrochemistry Communications, 2003, 5(3): 220–224

DOI

48
Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry. B, 2005, 109(33): 15754–15759

DOI PMID

49
Ali H, Ismail N, Mekewi M, Hengazy A C. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. Journal of Solid State Electrochemistry, 2015, 19(10): 3019–3026

DOI

50
Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J. Fabrication of Ag/TiO2 nanotube array with enhanced photocatalytic degradation of aqueous organic pollutant. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 58: 24–29

DOI

51
Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochimica Acta, 2013, 107: 313–319

DOI

52
Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochimica Acta, 2010, 55(24): 7211–7218

DOI

53
Bai S, Liu H, Sun J, Tian Y, Chen S, Song J, Luo R, Li D, Chen A, Liu C C. Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Applied Surface Science, 2015, 338: 61–68

DOI

54
Smith Y R, Sarma B, Mohanty S K, Misra M. Formation of TiO2–WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochemistry Communications, 2012, 19: 131–134

DOI

55
Palmas S, Castresana P A, Mais L, Vacca A, Mascia M, Ricci P C. TiO2–WO3 nanostructured systems for photoelectrochemical applications. RSC Advances, 2016, 6(103): 101671–101682

DOI

56
Yoong L S, Chong F K, Dutta B K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 2009, 34(10): 1652–1661

DOI

57
Kuvarega A T, Krause R W M, Mamba B B. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water. Journal of Nanoparticle Research, 2012, 14(4): 776–791

DOI

58
Kubelka P, Munk F. A contribution to the look of the paints. Journal of Technical Physics, 1931, 12: 593–601

59
Riboni F, Bettini L G, Bahnemann D W, Selli E. WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today, 2013, 209: 28–34

DOI

60
Park J H, Park O O, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters, 2006, 89(16): 163106

DOI

Outlines

/