Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production
Received date: 11 Mar 2017
Accepted date: 26 May 2017
Published date: 04 Jun 2018
Copyright
WO3 decorated photoelectrodes of titanium nanotube arrays (W-oxide TNTAs) were synthesized via a two-step process, namely, electrochemical oxidation of titanium foil and electrodeposition of W-oxide for various interval times of 1, 2, 3, 5, and 20 min to improve the photoelectrochemical performance and the amount of hydrogen generated. The synthesized photoelectrodes were characterized by various characterization techniques. The presence of tungsten in the modified TNTAs was confirmed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM) proved the deposition of W-oxide as small particles staked up on the surface of the tubes at lower deposition time whereas longer times produced large and aggregate particles to mostly cover the surface of TiO2 nanotubes. Additionally, the incorporation of WO3 resulted in a shift of the absorption edge toward visible light as confirmed by UV-Vis diffuse reflectance spectroscopy and a decrease in the estimated band gap energy values hence, modified TNTAs facilitated a more efficient utilization of solar light for water splitting. From the photoelectrochemical measurement data, the optimal photoelectrode produced after 2 min of deposition time improved the photo conversion efficiency and the hydrogen generation by 30% compared to that of the pure TNTA.
Heba ALI , N. ISMAIL , M. S. AMIN , Mohamed MEKEWI . Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production[J]. Frontiers in Energy, 2018 , 12(2) : 249 -258 . DOI: 10.1007/s11708-018-0547-1
1 |
Hunge Y M, Mahadik M A, Moholkar A V, Bhosale C H. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrasonics Sonochemistry, 2017, 35(Pt A): 233–242
|
2 |
Van de Krol R, Grätzel M. Photoelectrochemical Hydrogen Production. New York: Springer, 2012
|
3 |
Wydrzynski T J, Hillier W. Molecular Solar Fuels. Cambridge: Royal Society of Chemistry, 2012
|
4 |
Archer M D, Nozik A J. Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. London: Imperial College Press, 2008
|
5 |
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
|
6 |
Grimes C A, Varghese O K, Ranjan S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. New York: Springer, 2008
|
7 |
Bhattacharyya R, Misra A, Sandeep K C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13
|
8 |
Viswanathan B, Subramanian V, Lee J S. Materials and Processes for Solar Fuel Production. New York: Springer, 2014
|
9 |
Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry. A, 2016, 4(18): 6772–6801
|
10 |
Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2012, 92: 315–321
|
11 |
Khataee A, Mansoori G A. Nanostructured Materials Titanium Dioxide Properties, Preparation and applications. Singapore: World Scientific, 2012
|
12 |
Anpo M, Kamat P V. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials. London: Springer, 2010
|
13 |
Momeni M M, Ghayeb Y, Ghonchegi Z. Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surface Engineering, 2016, 32(7): 520–525
|
14 |
Momeni M M, Ghayeb Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. Journal of Alloys and Compounds, 2015, 637: 393–400
|
15 |
Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. Journal of Solid State Electrochemistry, 2016, 20(3): 683–689
|
16 |
Momeni M M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bulletin of Materials Science, 2016, 39(6): 1389–1395
|
17 |
Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry, 2015, 751: 43–48
|
18 |
Momeni M M, Ghayeb Y. Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3318–3327
|
19 |
Ghayeb Y, Momeni M M. Solar water-splitting using palladium modified tungsten trioxide-titania nanotube photocatalysts. Journal of Materials Science Materials in Electronics, 2016, 27(2): 1805–1811
|
20 |
Momeni M M, Ghayeb Y, Ghonchegi Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 2015, 41(7): 8735–8741
|
21 |
Ge M Z, Cao C Y, Li S H, Tang Y X, Wang L N, Qi N, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8(9): 5226–5234
|
22 |
Momeni M M, Ghayeb Y. Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting. Applied Physics. A, Materials Science & Processing, 2016, 122(6): 620
|
23 |
Momeni M M, Ghayeb Y. Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 2015, 45(6): 557–566
|
24 |
Momeni M M, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. Journal of Electroanalytical Chemistry, 2015, 739: 149–155
|
25 |
Ge M Z, Li S H, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry. A, 2015, 3(7): 3491–3499
|
26 |
Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab S S, Lai Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advancement of Science, 2017, 4(1): 1600152
|
27 |
Beydoun D, Amal R, Low G, McEvoy S. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458
|
28 |
Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma G L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A Chemical, 2010, 327(1–2): 51–57
|
29 |
Lee W J, Shinde P S, Go G H, Ramasamy E. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36(9): 5262–5270
|
30 |
Subash B, Krishnakumar B, Pandiyan V, Swaminathan M, Shanthi M. Synthesis and characterization of novel WO3 loaded Ag–ZnO and its photocatalytic activity. Materials Research Bulletin, 2013, 48(1): 63–69
|
31 |
Khare C, Sliozberg K, Meyer R, Savan A, Schuhmann W, Ludwig A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. International Journal of Hydrogen Energy, 2013, 38(36): 15954–15964
|
32 |
Rajeshwar K, McConnell R, Licht S. Solar Hydrogen Generation: Toward a Renewable Energy Future. New York: Springer, 2008
|
33 |
Choi T, Kim J S, Kim J H. Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Advanced Powder Technology, 2016, 27(2): 347–353
|
34 |
Dozzi M V, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 2016, 186: 157–165
|
35 |
Srinivasan A, Miyauchi M. Chemically stable WO3 based thin-film for visible light induced oxidation and superhydrophilicity. Journal of Physical Chemistry C, 2012, 116(29): 15421–15426
|
36 |
Souvereyns B, Elen K, De Dobbelaere C, Kelchtermans A, Peys N, D’Haen J, Mertens M, Mullens S, Van den Rul H, Meynen V, Cool P, Hardy A, Van Bael M K. Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles. Chemical Engineering Journal, 2013, 223: 135–144
|
37 |
Somasundaram S, Chenthamarakshan C R, de Tacconi N R, Basit N A, Rajeshwar K. Composite WO3–TiO2 films: pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochemistry Communications, 2006, 8(4): 539–543
|
38 |
Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. Journal of the Electrochemical Society, 1999, 146(1): 243–249
|
39 |
Shiyanovskaya I, Hepel M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. Journal of the Electrochemical Society, 1998, 145(11): 3981–3985
|
40 |
He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao J. Photochromism of WO3 colloids combined with TiO2 nanoparticles. Journal of Physical Chemistry. B, 2002, 106(49): 12670–12676
|
41 |
He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chemistry of Materials, 2003, 15(21): 4039–4045
|
42 |
Paramasivam I, Nah Y C, Das C, Shrestha N K, Schmuki P. WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(30): 8993–8997
|
43 |
Nazari M, Golestani-Fard F, Bayati R, Eftekhari-Yekta B. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes. Superlattices and Microstructures, 2015, 80: 91–101
|
44 |
Momeni M, Ghayeb Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. Journal of Molecular Catalysis. A: Chemical, 2016, 417: 107–115
|
45 |
Zhong M, Zhang G, Yang X. Preparation of Ti mesh supported WO3/TiO2 nanotubes composite and its application for photocatalytic degradation under visible light. Materials Letters, 2015, 145: 216–218
|
46 |
Ali H, Ismail N, Hegazy A, Mekewi M. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochimica Acta, 2014, 150: 314–319
|
47 |
de Tacconi N R, Chenthamarakshan C R, Rajeshwar K, Pauporté T, Lincot D. Pulsed electrodeposition of WO3–TiO2 composite films. Electrochemistry Communications, 2003, 5(3): 220–224
|
48 |
Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry. B, 2005, 109(33): 15754–15759
|
49 |
Ali H, Ismail N, Mekewi M, Hengazy A C. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. Journal of Solid State Electrochemistry, 2015, 19(10): 3019–3026
|
50 |
Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J. Fabrication of Ag/TiO2 nanotube array with enhanced photocatalytic degradation of aqueous organic pollutant. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 58: 24–29
|
51 |
Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochimica Acta, 2013, 107: 313–319
|
52 |
Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochimica Acta, 2010, 55(24): 7211–7218
|
53 |
Bai S, Liu H, Sun J, Tian Y, Chen S, Song J, Luo R, Li D, Chen A, Liu C C. Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Applied Surface Science, 2015, 338: 61–68
|
54 |
Smith Y R, Sarma B, Mohanty S K, Misra M. Formation of TiO2–WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochemistry Communications, 2012, 19: 131–134
|
55 |
Palmas S, Castresana P A, Mais L, Vacca A, Mascia M, Ricci P C. TiO2–WO3 nanostructured systems for photoelectrochemical applications. RSC Advances, 2016, 6(103): 101671–101682
|
56 |
Yoong L S, Chong F K, Dutta B K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 2009, 34(10): 1652–1661
|
57 |
Kuvarega A T, Krause R W M, Mamba B B. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water. Journal of Nanoparticle Research, 2012, 14(4): 776–791
|
58 |
Kubelka P, Munk F. A contribution to the look of the paints. Journal of Technical Physics, 1931, 12: 593–601
|
59 |
Riboni F, Bettini L G, Bahnemann D W, Selli E. WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today, 2013, 209: 28–34
|
60 |
Park J H, Park O O, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters, 2006, 89(16): 163106
|
/
〈 | 〉 |