RESEARCH ARTICLE

Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique

  • S. Surender REDDY 1 ,
  • Chan-Mook JUNG , 2 ,
  • Ko Jun SEOG 3
Expand
  • 1. Department of Railroad and Electrical Engineering, Woosong University, Daejeon 300718, Republic of Korea
  • 2. Department of Railroad and Civil Engineering, Woosong University, Daejeon 300718, Republic of Korea
  • 3. Korea Rail Network Authority, Daejeon 300718, Republic of Korea

Received date: 24 May 2015

Accepted date: 28 Jul 2015

Published date: 29 Feb 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach proposed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnection is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method.

Cite this article

S. Surender REDDY , Chan-Mook JUNG , Ko Jun SEOG . Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique[J]. Frontiers in Energy, 2016 , 10(1) : 105 -113 . DOI: 10.1007/s11708-016-0393-y

1
Vahidinasab V, Jadid S, Kazemi A. Day-ahead price forecasting in restructured power systems using artificial neural networks. Electric Power Systems Research, 2008, 78(8): 1332–1342

2
Nogales F J, Contreras J, Conejo A J, Espínola R. Forecasting next-day electricity prices by time series models. IEEE Transactions on Power Systems, 2002, 17(2): 342–348

DOI

3
Contreras J, Espinola R, Nogales F J, Conejo A J. ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 2003, 18(3): 1014–1020

DOI

4
Conejo A J, Plazas M A, Espinola R, Molina A B. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems, 2005, 20(2): 1035–1042

DOI

5
Areekul P, Senjyu T, Toyama H, Yona A. A Hybrid ARIMA and neural network model for short-term price forecasting in deregulated market. IEEE Transactions on Power Systems, 2010, 25(1): 524–530

DOI

6
Amjady N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Transactions on Power Systems, 2006, 21(2): 887–896

DOI

7
Catalão J P S, Pousinho H M I, Mendes V M F. Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Transactions on Power Systems, 2011, 26(1): 137–144

DOI

8
Yamin H Y, Shahidehpour S M, Li Z. Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets. International Journal of Electrical Power & Energy Systems, 2004, 26(8): 571–581

9
Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks. International Journal of Electrical Power & Energy Systems, 2011, 33(3): 550–555

10
Weron R, Misiorek A. Forecasting spot electricity prices: a comparison of parametric and semi-parametric time series models. International Journal of Forecasting, 2008, 24(4): 744–763

DOI

11
Cancelo J R, Espasa A, Grafe R. Forecasting the Electricity Load from one day to one week ahead for the Spanish system operator. International Journal of Forecasting, 2008, 24(4): 588–602

DOI

12
Catalão J P S, Mariano S J P S, Mendes V M F, Ferreira L A F M. Short-term electricity prices forecasting in a competitive market: a neural network approach. Electric Power Systems Research, 2007, 77(10): 1297–1304

DOI

13
Aggarwal S K, Saini L M, Kumar A. Electricity price forecasting in deregulated markets: a review and evaluation. International Journal of Electrical Power & Energy Systems, 2009, 31(1): 13–22

14
Anbazhagan S, Kumarappan N. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management, 2014, 78: 711–719

15
Osório G J, Matias J C O, Catalão J P S. Electricity prices forecasting by a hybrid evolutionary-adaptive methodology. Energy Conversion and Management, 2014, 80(4): 363–373

16
Dong Y, Wang J, Jiang H, Wu J. Short-term electricity price forecast based on the improved hybrid model. Energy Conversion and Management, 2011, 52(8‒9): 2987–2995

DOI

17
Arabali A, Chalko E, Etezadi-Amoli M, Fadali M S. Short-term electricity price forecasting. Proceedings of IEEE Power and Energy Society General Meeting. Vancouver, CA, 2013

18
Amjady N, Daraeepour A, Keynia F. Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. IET Generation, Transmission and Distribution, 2010, 4(3): 432–444

DOI

19
Ray P, Sen S, Barisal A K. Hybrid methodology for short-term load forecasting. IEEE International Conference on Power Electronics, Drives and Energy Systems, 1–6, 2014

20
Mahaei S M, Navayi M R. Power system state estimation with weighted linear least square. International Journal of Electrical and Computer Engineering, 2014, 4(2): 169–178

21
Zhu J. Power Flow Analysis. Wiley-IEEE Press, 2015

22
Wan J, Miu K N. Weighted least squares methods for load estimation in distribution networks. IEEE Transactions on Power Systems, 2003, 18(4): 1338–1345

DOI

23
PJM. Pennsylvania–New Jersey–Maryland market. 2015–03–21

24
Conejo A J, Plazas M A, Espínola R, Molina A B. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems, 2005, 20(2): 1035–1042

DOI

25
Conejo A J, Contreras J, Espínola R, Plazas M A. Forecasting electricity prices for a day-ahead pool-based energy market. International Journal of Forecasting, 2005, 21(3): 435–462

DOI

Outlines

/