Phase transition regulation and caloric effect
Phase transition regulation and caloric effect
Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.
phase transition regulation / caloric effect / solid state refrigeration
[1] |
Gschneidner K A Jr, Pecharsky V K, Tsokol A O. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479–1539
CrossRef
ADS
Google scholar
|
[2] |
Franco V, Blazquez J S, Ipus J J.
CrossRef
ADS
Google scholar
|
[3] |
Shen B G, Sun J R, Hu F X.
CrossRef
ADS
Google scholar
|
[4] |
Zheng X Q, Shen B G. The magnetic properties and magnetocaloric effects in binary R-T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds. Chinese Physics B, 2017, 26(2): 027501
CrossRef
ADS
Google scholar
|
[5] |
Li L, Yan M. Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. Journal of Materials Science and Technology, 2023, 136: 1–12
CrossRef
ADS
Google scholar
|
[6] |
Zhang Y, Tian Y, Zhang Z.
CrossRef
ADS
Google scholar
|
[7] |
Zhang Y, Zhu J, Li S.
CrossRef
ADS
Google scholar
|
[8] |
Zhang Y K, Wu J H, He J.
CrossRef
ADS
Google scholar
|
[9] |
Li L W, Yan M. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. Journal of Alloys and Compounds, 2020, 823: 153810
CrossRef
ADS
Google scholar
|
[10] |
Gao F, Sheng J, Ren W.
CrossRef
ADS
Google scholar
|
[11] |
Neese B, Chu B, Lu S G.
CrossRef
ADS
Google scholar
|
[12] |
Qian X S, Han D L, Zheng L R.
CrossRef
ADS
Google scholar
|
[13] |
Ma R, Zhang Z, Tong K.
CrossRef
ADS
Google scholar
|
[14] |
Greco A, Masselli C. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
CrossRef
ADS
Google scholar
|
[15] |
Chen Y Q, Qian J F, Yu J Y.
CrossRef
ADS
Google scholar
|
[16] |
Niu X, Jian X D, Gong W P.
CrossRef
ADS
Google scholar
|
[17] |
Zou K L, Shao C C, Bai P J.
CrossRef
ADS
Google scholar
|
[18] |
Tušek J, Engelbrecht K, Eriksen D.
CrossRef
ADS
Google scholar
|
[19] |
Zhao Z, Guo W, Zhang Z. Room-temperature colossal elastocaloric effects in three-dimensional graphene architectures: an atomistic study. Advanced Functional Materials, 2022, 32(42): 2203866
CrossRef
ADS
Google scholar
|
[20] |
Dang P, Ye F, Zhou Y.
CrossRef
ADS
Google scholar
|
[21] |
Li D, Li Z, Zhang X.
CrossRef
ADS
Google scholar
|
[22] |
Mañosa L, Planes A. Materials with giant mechanocaloric effects: Cooling by strength. Advanced Materials, 2017, 29(11): 1603607
CrossRef
ADS
Google scholar
|
[23] |
Moya X, Mathur N D. Caloric materials for cooling and heating. Science, 2020, 370(6518): 797–803
CrossRef
ADS
Google scholar
|
[24] |
Li B, Kawakita Y, Ohira-Kawamura S.
CrossRef
ADS
Google scholar
|
[25] |
Li F B, Li M, Xu X.
CrossRef
ADS
Google scholar
|
[26] |
Lin J, Tong P, Zhang X.
CrossRef
ADS
Google scholar
|
[27] |
Zhang K, Song R, Qi J.
CrossRef
ADS
Google scholar
|
[28] |
Ren Q, Qi J, Yu D.
CrossRef
ADS
Google scholar
|
[29] |
Romanini M, Wang Y, Gurpinar K.
CrossRef
ADS
Google scholar
|
[30] |
Aznar A, Negrier P, Planes A.
CrossRef
ADS
Google scholar
|
[31] |
Imamura W, Usuda E O, Paixao L S.
CrossRef
ADS
Google scholar
|
[32] |
Aznar A, Lloveras P, Barrio M.
CrossRef
ADS
Google scholar
|
[33] |
Gao Y, Liu H, Hu F.
CrossRef
ADS
Google scholar
|
[34] |
Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 1997, 78(23): 4494–4497
CrossRef
ADS
Google scholar
|
[35] |
Pecharsky V K, Gschneidner K A Jr. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). Journal of Magnetism and Magnetic Materials, 1997, 167(3): L179–L184
CrossRef
ADS
Google scholar
|
[36] |
Nikitin S A, Myalikgulyev G, Tishin A M.
CrossRef
ADS
Google scholar
|
[37] |
Annaorazov M P, Nikitin S A, Tyurin A L.
CrossRef
ADS
Google scholar
|
[38] |
Hu F X, Shen B G, Sun J R.
CrossRef
ADS
Google scholar
|
[39] |
de Oliveira N A. Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd). Journal of Applied Physics, 2013, 113(3): 033910
CrossRef
ADS
Google scholar
|
[40] |
Hu F X, Shen B G, Sun J R.
CrossRef
ADS
Google scholar
|
[41] |
Fujita A, Fujieda S, Hasegawa Y.
CrossRef
ADS
Google scholar
|
[42] |
Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1–xSbx. Applied Physics Letters, 2001, 79(20): 3302–3304
CrossRef
ADS
Google scholar
|
[43] |
UI Hassan N, Shah I A, Khan T.
CrossRef
ADS
Google scholar
|
[44] |
Yang H, Liu J, Li C.
CrossRef
ADS
Google scholar
|
[45] |
Bao L F, Huang W D, Ren Y J. Tuning martensitic phase transition by non-magnetic atom vacancy in MnCoGe alloys and related giant magnetocaloric effect. Chinese Physics Letters, 2016, 33(7): 077502
CrossRef
ADS
Google scholar
|
[46] |
Zhang H, Xing C F, Long K W.
CrossRef
ADS
Google scholar
|
[47] |
Zhang B, Zheng X Q, Zhao T Y.
CrossRef
ADS
Google scholar
|
[48] |
Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A.
CrossRef
ADS
Google scholar
|
[49] |
Hao J Z, Hu F X, Yu Z B.
CrossRef
ADS
Google scholar
|
[50] |
Pecharsky V K, Gschneidner K A Jr. Phase relationships and crystallography in the pseudobinary system Gd5Si4-Gd5Ge4. Journal of Alloys and Compounds, 1997, 260(1–2): 98–106
CrossRef
ADS
Google scholar
|
[51] |
Hu F X, Gao J, Qian X L.
CrossRef
ADS
Google scholar
|
[52] |
Wada H, Matsuo S, Mitsuda A. Pressure dependence of magnetic entropy change and magnetic transition in MnAs1–xSbx. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(9): 092407
CrossRef
ADS
Google scholar
|
[53] |
Liu E, Wang W, Feng L.
CrossRef
ADS
Google scholar
|
[54] |
Zhao Y Y, Hu F X, Bao L F.
CrossRef
ADS
Google scholar
|
[55] |
Johnson V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorganic Chemistry, 1975, 14(5): 1117–1120
CrossRef
ADS
Google scholar
|
[56] |
Anzai S, Ozawa K. Coupled nature of magnetic and structural transition in MnNiGe under pressure. Physical Review B: Condensed Matter, 1978, 18(5): 2173–2178
CrossRef
ADS
Google scholar
|
[57] |
Łażewski J, Piekarz P, Tobola J.
CrossRef
ADS
Google scholar
|
[58] |
Jia L, Liu G J, Sun J R.
CrossRef
ADS
Google scholar
|
[59] |
Gruner M E, Keune W, Roldan Cuenya B.
CrossRef
ADS
Google scholar
|
[60] |
Landers J, Salamon S, Keune W.
CrossRef
ADS
Google scholar
|
[61] |
Bao L F, Hu F X, Wu R R.
CrossRef
ADS
Google scholar
|
[62] |
Li B, Ren W J, Zhang Q.
CrossRef
ADS
Google scholar
|
[63] |
von Ranke P J, de Oliveira N A, Mello C.
CrossRef
ADS
Google scholar
|
[64] |
Hao J, Hu F, Wang J T.
CrossRef
ADS
Google scholar
|
[65] |
Hao J Z, Hu F X, Yu Z B.
CrossRef
ADS
Google scholar
|
[66] |
Gschneidner K A Jr, Mudryk Y, Pecharsky V K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scripta Materialia, 2012, 67(6): 572–577
CrossRef
ADS
Google scholar
|
[67] |
Pecharsky V K, Gschneidner K A Jr. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~20 to ~290 K. Applied Physics Letters, 1997, 70(24): 3299–3301
CrossRef
ADS
Google scholar
|
[68] |
Pecharsky V K, Pecharsky A O, Gschneidner K A Jr. Uncovering the structure-property relationships in R5(SixGe4–x) intermetallic phases. Journal of Alloys and Compounds, 2002, 344(1–2): 362–368
CrossRef
ADS
Google scholar
|
[69] |
Hao J Z, Hu F X, Zhou H B.
CrossRef
ADS
Google scholar
|
[70] |
Oleś A, Duraj R, Kolenda M.
CrossRef
ADS
Google scholar
|
[71] |
Gong Y Y, Wang D H, Cao Q Q.
CrossRef
ADS
Google scholar
|
[72] |
Liu J, Gottschall T, Skokov K P.
CrossRef
ADS
Google scholar
|
[73] |
Qiao K, Hu F, Liu Y.
CrossRef
ADS
Google scholar
|
[74] |
Zhang H, Armstrong A, Müllner P. Effects of surface modifications on the fatigue life of unconstrained Ni-Mn-Ga single crystals in a rotating magnetic field. Acta Materialia, 2018, 155: 175–186
CrossRef
ADS
Google scholar
|
[75] |
Mañosa L, Gonzalez-Alonso D, Planes A.
CrossRef
ADS
Google scholar
|
[76] |
Pecharsky A O, Gschneidner K A Jr, Pecharsky V K. The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4–x alloys for 1.4 ≤ x≤ 2.2. Journal of Magnetism and Magnetic Materials, 2003, 267(1): 60–68
CrossRef
ADS
Google scholar
|
[77] |
Stern-Taulats E, Planes A, Lloveras P.
CrossRef
ADS
Google scholar
|
[78] |
Nikitin S A, Myalikgulyev G, Annaorazov M P.
CrossRef
ADS
Google scholar
|
[79] |
Biswas A, Chandra S, Phan M H.
CrossRef
ADS
Google scholar
|
[80] |
Qiao K, Wang J, Hu F.
CrossRef
ADS
Google scholar
|
[81] |
Provenzano V, Shapiro A J, Shull R D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 2004, 429(6994): 853–857
CrossRef
ADS
Google scholar
|
[82] |
Lyubina J, Schäfer R, Martin N.
CrossRef
ADS
Google scholar
|
[83] |
Stern-Taulats E, Castan T, Planes A.
CrossRef
ADS
Google scholar
|
[84] |
Kübler J, William A R, Sommers C B. Formation and coupling of magnetic moments in Heusler alloys. Physical Review B: Condensed Matter, 1983, 28(4): 1745–1755
CrossRef
ADS
Google scholar
|
[85] |
Sharma V K, Chattopadhyay M K, Roy S B. The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy. Journal of Physics Condensed Matter, 2011, 23(36): 366001
CrossRef
ADS
Google scholar
|
[86] |
Liang F X, Hao J Z, Shen F R.
CrossRef
ADS
Google scholar
|
[87] |
Qiao K, Wang J, Zuo S.
CrossRef
ADS
Google scholar
|
[88] |
Aliev A M, Batdalov A B, Khanov L N.
CrossRef
ADS
Google scholar
|
[89] |
Zverev V I, Saletsky A M, Gimaev R R.
CrossRef
ADS
Google scholar
|
[90] |
Khaykovich B, Zeldov E, Majer D.
CrossRef
ADS
Google scholar
|
[91] |
Chang K, Feng W, Chen L Q. Effect of second-phase particle morphology on grain growth kinetics. Acta Materialia, 2009, 57(17): 5229–5236
CrossRef
ADS
Google scholar
|
[92] |
Tang X, Li J, Sepehri-Amin H.
CrossRef
ADS
Google scholar
|
[93] |
Aliev A M, Batdalov A B, Khanov L N.
CrossRef
ADS
Google scholar
|
[94] |
Seo J, McGillicuddy R D, Slavney A H.
CrossRef
ADS
Google scholar
|
[95] |
Li J, Barrio M, Dunstan D J.
CrossRef
ADS
Google scholar
|
[96] |
Aznar A, Lloveras P, Romanini M.
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |