Design and analysis of electrothermal metasurfaces

PDF(684 KB)
PDF(684 KB)
Frontiers in Energy ›› 2023, Vol. 17 ›› Issue (1) : 134-140. DOI: 10.1007/s11708-022-0841-9

作者信息 +

Design and analysis of electrothermal metasurfaces

Author information +
History +

Abstract

Electrothermal metasurfaces have garnered considerable attention owing to their ability to dynamically control thermal infrared radiation. Although previous studies were mainly focused on metasurfaces with infinite unit cells, in practice, the finite-size effect can be a critical design factor for developing thermal metasurfaces with fast response and broad temperature uniformity. Here, we study the thermal metasurfaces consisting of gold nanorods with a finite array size, which can achieve a resonance close to that of the infinite case with only several periods. More importantly, such a small footprint due to the finite array size yields response time down to a nanosecond level. Furthermore, the number of the unit cells in the direction perpendicular to the axis of nanorods is found to be insensitive to the resonance and response time; thus, providing a tunable aspect ratio that can boost the temperature uniformity in the sub-Kelvin level.

Keywords

modulated thermal infrared radiation / metasurface / nanosecond response time / sub-Kelvin temperature uniformity / finite size / aspect ratio

引用本文

导出引用
. . Frontiers in Energy. 2023, 17(1): 134-140 https://doi.org/10.1007/s11708-022-0841-9

参考文献

[1]
Liu B, Gong W, Yu B. . Perfect thermal emission by nanoscale transmission line resonators. Nano Letters, 2017, 17(2): 666–672
CrossRef ADS Google scholar
[2]
Li J, Li Z, Shen S. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures. Optics Express, 2020, 28(23): 34123–34136
CrossRef ADS Google scholar
[3]
Li J, Li Z, Liu X. . Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106: 115416
[4]
Lu F, Liu B, Shen S. Infrared wavefront control based on graphene metasurfaces. Advanced Optical Materials, 2014, 2(8): 794–799
CrossRef ADS Google scholar
[5]
Li J, Liu B, Shen S. Graphene surface plasmons mediated thermal radiation. Journal of Optics, 2018, 20(2): 024011
CrossRef ADS Google scholar
[6]
Greffet J J, Carminati R, Joulain K. . Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64
CrossRef ADS Google scholar
[7]
BaranovD GXiaoYNechepurenkoI A, . Nanophotonic engineering of far-field thermal emitters. 2018: arXiv: 1806.03372
[8]
Li W, Fan S. Nanophotonic control of thermal radiation for energy applications. Optics Express, 2018, 26(12): 15995
CrossRef ADS Google scholar
[9]
Ren Z, Chang Y, Ma Y. . Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 2020, 8(3): 1900653
CrossRef ADS Google scholar
[10]
Li Y, Li W, Han T. . Transforming heat transfer with thermal metamaterials and devices. Nature Reviews. Materials, 2021, 6(6): 488–507
CrossRef ADS Google scholar
[11]
Lin Y, Xu Z. Reconfigurable metamaterials for optoelectronic applications. International Journal of Optomechatronics, 2020, 14(1): 78–93
CrossRef ADS Google scholar
[12]
Miller D A B, Zhu L, Fan S. Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4336–4341
CrossRef ADS Google scholar
[13]
Inoue T, Zoysa M D, Asano T. . Realization of dynamic thermal emission control. Nature Materials, 2014, 13(10): 928–931
CrossRef ADS Google scholar
[14]
Brar V W, Sherrott M C, Jang M S. . Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 2015, 6(1): 7032
CrossRef ADS Google scholar
[15]
Park J H, Han S, Nagpal P. . Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics, 2016, 3(3): 494–500
CrossRef ADS Google scholar
[16]
Lochbaum A, Fedoryshyn Y, Dorodnyy A. . On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS Photonics, 2017, 4(6): 1371–1380
CrossRef ADS Google scholar
[17]
Tittl A, Michel A K U, Schäferling M. . A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 2015, 27(31): 4597–4603
CrossRef ADS Google scholar
[18]
Lenert A, Bierman D M, Nam Y. . A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130
CrossRef ADS Google scholar
[19]
Bierman D M, Lenert A, Chan W R. . Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068
CrossRef ADS Google scholar
[20]
Liu X, Padilla W J. Dynamic manipulation of infrared radiation with MEMS metamaterials. Advanced Optical Materials, 2013, 1(8): 559–562
CrossRef ADS Google scholar
[21]
Miyazaki H T, Kasaya T, Oosato H. . Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Science and Technology of Advanced Materials, 2015, 16(3): 035005
CrossRef ADS Google scholar
[22]
Park J, Kang J H, Liu X. . Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 2018, 4(12): eaat3163
CrossRef ADS Google scholar
[23]
Zhang Y, Fowler C, Liang J. . Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16(6): 661–666
CrossRef ADS Google scholar
[24]
Wang Y, Landreman P, Schoen D. . Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 2021, 16(6): 667–672
CrossRef ADS Google scholar
[25]
Abdollahramezani S, Hemmatyar O, Taghinejad M. . Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 2022, 13(1): 1696
CrossRef ADS Google scholar
[26]
Li J, Wuenschell J, Li Z. . Fiber coupled near-field thermoplasmonic emission from gold nanorods at 1100 K. Small. Small, 2021, 17(17): e2007274
CrossRef ADS Google scholar
[27]
Li J, Yu B, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces. Physical Review Letters, 2020, 124(13): 137401
CrossRef ADS Google scholar
[28]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185–200
CrossRef ADS Google scholar
[29]
Li Z, Li J, Liu X. . Wiener chaos expansion method for thermal radiation from inhomogeneous structures. Physical Review. B, 2021, 104(19): 195426
CrossRef ADS Google scholar
[30]
Grant J, Ma Y, Saha S. . Polarization insensitive, broadband terahertz metamaterial absorber. Optics Letters, 2011, 36(17): 3476–3478
CrossRef ADS Google scholar
[31]
Hasan D, Pitchappa P, Wang J. . Novel CMOS-compatible Mo–AlN–Mo platform for metamaterial-based mid-IR absorber. ACS Photonics, 2017, 4(2): 302–315
CrossRef ADS Google scholar
[32]
Lochbaum A, Dorodnyy A, Koch U. . Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Letters, 2020, 20(6): 4169–4176
CrossRef ADS Google scholar
[33]
Li D, Zhou H, Hui X. . Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(20): 2101879
CrossRef ADS Google scholar
[34]
Wojszvzyk L, Nguyen A, Coutrot A L. . An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nature Communications, 2021, 12(1): 1492
CrossRef ADS Google scholar
[35]
Mohammadi Estakhri N, Argyropoulos C, Alù A. Graded metascreens to enable a new degree of nanoscale light management. Philosophical Transactions—Royal Society. Mathematical, Physical, and Engineering Sciences, 2015, 373(2049): 20140351
CrossRef ADS Google scholar
[36]
Tsitsas N L, Valagiannopoulos C A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(7): D1
CrossRef ADS Google scholar
[37]
Liu X, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter. Optica, 2017, 4(4): 430–433
CrossRef ADS Google scholar
[38]
Kang D D, Inoue T, Asano T. . Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photonics, 2019, 6(6): 1565–1571
CrossRef ADS Google scholar
[39]
Yao Y, Kats M A, Genevet P. . Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters, 2013, 13(3): 1257–1264
CrossRef ADS Google scholar
[40]
Yao Y, Shankar R, Kats M A. . Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532
CrossRef ADS Google scholar
[41]
Fan K, Suen J, Wu X. . Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201
CrossRef ADS Google scholar
[42]
Zeng B, Huang Z, Singh A. . Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51
CrossRef ADS Google scholar
[43]
Shiue R J, Gao Y, Tan C. . Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nature Communications, 2019, 10(1): 109
CrossRef ADS Google scholar
[44]
Mahlmeister N H, Lawton L M, Luxmoore I J. . Modulation characteristics of graphene-based thermal emitters. Applied Physics Express, 2016, 9(1): 012105
CrossRef ADS Google scholar
[45]
Shi C, Mahlmeister N H, Luxmoore I J. . Metamaterial-based graphene thermal emitter. Nano Research, 2018, 11(7): 3567–3573
CrossRef ADS Google scholar

Acknowledgments

This study was primarily supported by the Defense Threat Reduction Agency (Grant No. HDTRA1-19-1-0028) and partially funded by the National Science Foundation (Grant No. CBET-1931964). X. L., Z. L., and Z. W. contributed equally; X. L. and Z. L. identified the problem; Z. L. and X. L. conducted the optical simulations; Z. W. and X. L. conducted the thermal simulations; X. L. and Z. L. prepared the manuscript with the input from Z. W. and H. S. Y.; S. S. supervised the research. All authors have approved the final version of the manuscript. The authors declare no competing financial interest.

版权

2022 Higher Education Press 2022
PDF(684 KB)

Accesses

Citation

Detail

段落导航
相关文章

/