Chemisorption solid materials for hydrogen storage near ambient temperature: a review

PDF(3123 KB)
PDF(3123 KB)
Frontiers in Energy ›› 2023, Vol. 17 ›› Issue (1) : 72-101. DOI: 10.1007/s11708-022-0835-7

作者信息 +

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Author information +
History +

Abstract

Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.

Keywords

hydrogen storage capacity / chemisorption / near-ambient-temperature / modification methods / alloy hydrides

引用本文

导出引用
. . Frontiers in Energy. 2023, 17(1): 72-101 https://doi.org/10.1007/s11708-022-0835-7

参考文献

[1]
Muradov N Z, Veziroğlu T N. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International Journal of Hydrogen Energy, 2008, 33( 23): 6804– 6839
CrossRef ADS Google scholar
[2]
Egeland-Eriksen T, Hajizadeh A, Sartori S. Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. International Journal of Hydrogen Energy, 2021, 46( 63): 31963– 31983
CrossRef ADS Google scholar
[3]
Sandri O, Holdsworth S, Hayes J. . Hydrogen for all? Household energy vulnerability and the transition to hydrogen in Australia. Energy Research & Social Science, 2021, 79 : 102179
CrossRef ADS Google scholar
[4]
Hassan I A, Ramadan H S, Saleh M A. . Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renewable & Sustainable Energy Reviews, 2021, 149 : 111311
CrossRef ADS Google scholar
[5]
Ma Y, Wang X R, Li T. . Hydrogen and ethanol: production, storage, and transportation. International Journal of Hydrogen Energy, 2021, 46( 54): 27330– 27348
CrossRef ADS Google scholar
[6]
Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. International Journal of Hydrogen Energy, 2021, 46( 46): 23779– 23794
CrossRef ADS Google scholar
[7]
Roh H S, Hua T Q, Ahluwalia R K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. International Journal of Hydrogen Energy, 2013, 38( 29): 12795– 12802
CrossRef ADS Google scholar
[8]
Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 2017, 42( 9): 6033– 6050
CrossRef ADS Google scholar
[9]
Elberry A M, Thakur J, Santasalo-Aarnio A. . Large-scale compressed hydrogen storage as part of renewable electricity storage systems. International Journal of Hydrogen Energy, 2021, 46( 29): 15671– 15690
CrossRef ADS Google scholar
[10]
Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019, 44( 23): 11901– 11919
CrossRef ADS Google scholar
[11]
Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010, 35( 10): 4524– 4533
CrossRef ADS Google scholar
[12]
Ali N A, Sazelee N A, Ismail M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46( 62): 31674– 31698
CrossRef ADS Google scholar
[13]
Doğan M, Sabaz P, Bi̇ci̇l Z. . Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute, 2020, 93( 6): 2176– 2185
CrossRef ADS Google scholar
[14]
Dillon A C, Jones K M, Bekkedahl T A. . Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386( 6623): 377– 379
CrossRef ADS Google scholar
[15]
Rajaura R S, Srivastava S, Sharma V. . Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 2016, 41( 22): 9454– 9461
CrossRef ADS Google scholar
[16]
Shet S P, Shanmuga Priya S, Sudhakar K. . A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46( 21): 11782– 11803
CrossRef ADS Google scholar
[17]
Song Y, Dai J H. Mechanisms of dopants influence on hydrogen uptake in COF-108: a first principles study. International Journal of Hydrogen Energy, 2013, 38( 34): 14668– 14674
CrossRef ADS Google scholar
[18]
Chauhan P K, Parameshwaran R, Kannan P. . Hydrogen storage in porous polymer derived Silicon Oxycarbide ceramics: outcomes and perspectives. Ceramics International, 2021, 47( 2): 2591– 2599
CrossRef ADS Google scholar
[19]
Ioannatos G E, Verykios X E. H2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35( 2): 622– 628
CrossRef ADS Google scholar
[20]
Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32( 9): 1121– 1140
CrossRef ADS Google scholar
[21]
Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41( 28): 12108– 12126
CrossRef ADS Google scholar
[22]
Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109( 15): 7188– 7194
CrossRef ADS Google scholar
[23]
Sandrock G D. A new family of hydrogen storage alloys based on the system nickel-mischmetal-calcium. In: Proceedings of the 12th Intersociety Energy Conversion Engineering Conference 1977, 770828
[24]
Zhu Z, Zhu S, Lu H. . Stability of LaNi5-xCox alloys cycled in hydrogen—part 1 evolution in gaseous hydrogen storage performance. International Journal of Hydrogen Energy, 2019, 44( 29): 15159– 15172
CrossRef ADS Google scholar
[25]
Srivastava S, Panwar K. Investigations on microstructures of ball-milled MmNi5 hydrogen storage alloy. Materials Research Bulletin, 2016, 73 : 284– 289
CrossRef ADS Google scholar
[26]
Guo F, Namba K, Miyaoka H. . Hydrogen storage behavior of TiFe alloy activated by different methods. Materials Letters: X, 2021, 9 : 100061
CrossRef ADS Google scholar
[27]
Zhou P, Cao Z, Xiao X. . Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage. Journal of Alloys and Compounds, 2021, 875 : 160035
CrossRef ADS Google scholar
[28]
Graetz J, Reilly J J. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B, 2005, 109( 47): 22181– 22185
CrossRef ADS Google scholar
[29]
Ahluwalia R K, Hua T Q, Peng J K. Automotive storage of hydrogen in alane. International Journal of Hydrogen Energy, 2009, 34( 18): 7731– 7740
CrossRef ADS Google scholar
[30]
Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. Journal of Alloys and Compounds, 2021, 861 : 158615
CrossRef ADS Google scholar
[31]
de Almeida Neto G R, Gonçalves Beatrice C A, Leiva D R. . Polyetherimide-LaNi5 composite films for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46( 46): 23767– 23778
CrossRef ADS Google scholar
[32]
Mueller W M. The rare-earth hydrides. In: Mueller W M, Blackledge J P, Libowitz G G. Metal Hydrides. New York: Academic Press, 1968, 384– 440
[33]
Young K. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018
[34]
Sandrock G D, Murray J J, Post M L. . Hydrides and deuterides of CaNi5. Materials Research Bulletin, 1982, 17( 7): 887– 894
CrossRef ADS Google scholar
[35]
Lee Y J, Lee J Y, Park J K. A study on the hydride formation of TiFe and its alloys. Journal of the Korean Institute of Metals, 1982, 20( 11): 969– 974
[36]
The Hydrogen Fuel Cell Technologies Office. DOE target for hydrogen storage. Washington, DC, USA, 2022
[37]
Keçebaş A Kayfeci M. Hydrogen properties. In: Calise F, D’Accadia M D, Santarelli M, eds. Calise F, D’Accadia M D, Santarelli M, eds, 2019
[38]
Idriss H Scott M Subramani V. Introduction to hydrogen and its properties. In: Subramani V, Basile A, Veziroğlu T N, eds. Subramani V, Basile A, Veziroğlu T N, eds, 2015
[39]
Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties. Berlin: Springer, 2005
[40]
Züttel A. Fuels–hydrogen storage|hydrides. In: Garche J, ed. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009, 440– 458
CrossRef ADS Google scholar
[41]
Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56( 9): 5321– 5427
CrossRef ADS Google scholar
[42]
Lawrence Berkeley National Laboratory. Lattice structure. San Francisco, USA, 2022
[43]
Acha E, Requies J M, Cambra J F. Hydrogen purification methods: Iron-based redox processes, adsorption, and metal hydrides. In: Subramani V, Basile A, Veziroğlu T N. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015, 395– 417
[44]
Shashikala K. Hydrogen storage materials. In: Banerjee S, Tyagi A K. Functional Materials. Amsterdam: Elsevier, 2012, 607– 637
[45]
Nakamura Y, Sakaki K, Kim H. . Reaction paths via a new transient phase in non-equilibrium hydrogen absorption of LaNi2Co3. International Journal of Hydrogen Energy, 2020, 45( 41): 21655– 21665
CrossRef ADS Google scholar
[46]
Yang F, Wang J, Zhang Y. . Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2022, 47( 21): 11236– 11249
CrossRef ADS Google scholar
[47]
Stentson N T, McWhorter S, Ahn C C. Introduction to hydrogen storage. In: Gupta R B, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Storage, Transportation and Infrastructure. Cambridge: Woodhead Publishing, 2016, 3– 25
[48]
Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel. International Journal of Hydrogen Energy, 2017, 42( 27): 17328– 17338
CrossRef ADS Google scholar
[49]
Liu Y, Pan H. Hydrogen storage materials. In: Suib S L. New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Amsterdam: Elsevier, 2013, 377– 405
[50]
Chandra D. Intermetallics for hydrogen storage. In: Walker G. Solid-State Hydrogen Storage. Cambridge: Woodhead Publishing, 2008, 315– 356
[51]
Maeland A J. Hydrides for hydrogen storage. In: Peruzzini M, Poli R. Recent advances in hydride chemistry. Amsterdam: Elsevier, 2001, 531– 556
[52]
Heubner F, Hilger A, Kardjilov N. . In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources, 2018, 397 : 262– 270
CrossRef ADS Google scholar
[53]
Goto K, Ozaki S, Nakao W. Effect of diffusion coefficient variation on interrelation between hydrogen diffusion and induced internal stress in hydrogen storage alloys. Journal of Alloys and Compounds, 2017, 691 : 705– 712
CrossRef ADS Google scholar
[54]
Zhang Y, Wei X, Zhang W. . Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. International Journal of Hydrogen Energy, 2020, 45( 58): 33832– 33845
CrossRef ADS Google scholar
[55]
Yong H, Wei X, Zhang K. . Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. International Journal of Hydrogen Energy, 2021, 46( 34): 17802– 17813
CrossRef ADS Google scholar
[56]
Rattan Paul D, Sharma A, Panchal P. . Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Materials Today: Proceedings, 2021, 42 : 1673– 1677
CrossRef ADS Google scholar
[57]
Lv J, Wang Q, Chen P. . Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences, 2020, 103 : 106184
CrossRef ADS Google scholar
[58]
Chen Z, Luo L, Su Z. . Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. International Journal of Hydrogen Energy, 2019, 44( 26): 13538– 13548
CrossRef ADS Google scholar
[59]
Zaluska A Zaluski L Ström-Olsen J O. Lithium-beryllium hydrides: the lightest reversible metal hydrides. Journal of Alloys and Compounds, 2000, 307( 1–2): 157– 166
[60]
Fromm K M. Chemistry of alkaline earth metals: it is not all ionic and definitely not boring! Coordination Chemistry Reviews, 2020, 408: 213193
[61]
Zhang Y, Shimoda K, Miyaoka H. . Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35( 22): 12405– 12409
CrossRef ADS Google scholar
[62]
George L, Saxena S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. International Journal of Hydrogen Energy, 2010, 35( 11): 5454– 5470
CrossRef ADS Google scholar
[63]
Zhang X, Liu Y, Ren Z. . Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy & Environmental Science, 2021, 14( 4): 2302– 2313
CrossRef ADS Google scholar
[64]
Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds, 2001, 315( 1–2): 237– 242
CrossRef ADS Google scholar
[65]
Liang G, Huot J, Boily S. . Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999, 292( 1–2): 247– 252
CrossRef ADS Google scholar
[66]
Huot J, Ravnsbæk D B, Zhang J. . Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58( 1): 30– 75
CrossRef ADS Google scholar
[67]
Zhang X, Shen Z, Jian N. . A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43( 52): 23327– 23335
CrossRef ADS Google scholar
[68]
Zhang X, Leng Z, Gao M. . Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. Journal of Power Sources, 2018, 398 : 183– 192
CrossRef ADS Google scholar
[69]
Zhou C, Fang Z Z, Ren C. . Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. Journal of Physical Chemistry C, 2013, 117( 25): 12973– 12980
CrossRef ADS Google scholar
[70]
Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2008, 77( 3): 035427
CrossRef ADS Google scholar
[71]
Levesque D, Gicquel A, Darkrim F L. . Monte Carlo simulations of hydrogen storage in carbon nanotubes. Journal of Physics Condensed Matter, 2002, 14( 40): 9285– 9293
CrossRef ADS Google scholar
[72]
Xie X, Hou C, Chen C. . First-principles studies in Mg-based hydrogen storage materials: a review. Energy, 2020, 211 : 118959
CrossRef ADS Google scholar
[73]
Bahou S, Labrim H, Lakhal M. . Magnesium vacancies and hydrogen doping in MgH2 for improving gravimetric capacity and desorption temperature. International Journal of Hydrogen Energy, 2021, 46( 2): 2322– 2329
CrossRef ADS Google scholar
[74]
Lakhal M, Bhihi M, Benyoussef A. . The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations. International Journal of Hydrogen Energy, 2015, 40( 18): 6137– 6144
CrossRef ADS Google scholar
[75]
Edalati K, Uehiro R, Ikeda Y. . Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia, 2018, 149 : 88– 96
CrossRef ADS Google scholar
[76]
Zhang J, Zhu Y, Yao L. . State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, 782 : 796– 823
CrossRef ADS Google scholar
[77]
Kong V C Y, Kirk D W, Foulkes F R. . Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. International Journal of Hydrogen Energy, 2003, 28( 2): 205– 214
CrossRef ADS Google scholar
[78]
Xiao Y, Wu C, Wu H. . Hydrogen generation by CaH2-induced hydrolysis of Mg17Al12 hydride. International Journal of Hydrogen Energy, 2011, 36( 24): 15698– 15703
CrossRef ADS Google scholar
[79]
Kojima Y, Suzuki K I, Fukumoto K. . Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy, 2002, 27( 10): 1029– 1034
CrossRef ADS Google scholar
[80]
Liang G, Huot J, Schulz R. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. Journal of Alloys and Compounds, 2001, 321( 1): 146– 150
CrossRef ADS Google scholar
[81]
Chumphongphan S, Paskevicius M, Sheppard D A. . Cycle life and hydrogen storage properties of mechanical alloyed Ca1−xZrxNi5−yCry; (x = 0, 0.05 and y = 0, 0.1). International Journal of Hydrogen Energy, 2012, 37( 9): 7586– 7593
CrossRef ADS Google scholar
[82]
Liang G, Schulz R. Phase structures and hydrogen storage properties of Ca-Mg-Ni alloys prepared by mechanical alloying. Journal of Alloys and Compound, 2003, 356–357 : 612– 616
CrossRef ADS Google scholar
[83]
Si T Z, Zhang Q A, Pang G. . Structural characteristics and hydrogen storage properties of Ca3.0−xMgxNi9 (x = 0.5, 1.0, 1.5 and 2.0) alloys. International Journal of Hydrogen Energy, 2009, 34( 3): 1483– 1488
CrossRef ADS Google scholar
[84]
Shan X, Payer J H, Wainright J S. Increased performance of hydrogen storage by Pd-treated LaNi4.7Al0.3, CaNi5 and Mg2Ni. Journal of Alloys and Compounds, 2006, 426( 1–2): 400– 407
CrossRef ADS Google scholar
[85]
Shan X, Payer J H, Wainright J S. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 430( 1–2): 262– 268
CrossRef ADS Google scholar
[86]
Takeshita H T, Sakamoto Y, Takeichi N. . Synthesis of CaNi1−xPdx (0.1≤x≤1) alloys and hydrogenation properties of CaPd. Journal of Alloys and Compounds, 2002, 347( 1–2): 231– 238
CrossRef ADS Google scholar
[87]
Ma L, Sun Y, Wang L. . Calcium decoration of boron nitride nanotubes with vacancy defects as potential hydrogen storage materials: a first-principles investigation. Materials Today. Communications, 2021, 26 : 101985
CrossRef ADS Google scholar
[88]
Mao J, Guo P, Zhang T. . A first-principle study on hydrogen storage of metal atoms (M = Li, Ca, Sc, and Ti) coated B40 fullerene composites. Computational & Theoretical Chemistry, 2020, 1181 : 112823
CrossRef ADS Google scholar
[89]
Yoon M, Yang S, Hicke C. . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Physical Review Letters, 2008, 100( 20): 206806
CrossRef ADS Google scholar
[90]
Ataca C, Aktürk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79( 4): 041406
CrossRef ADS Google scholar
[91]
Lee H, Ihm J, Cohen M L. . Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters, 2010, 10( 3): 793– 798
CrossRef ADS Google scholar
[92]
Gao Y, Zhao N, Li J. . Hydrogen spillover storage on Ca-decorated graphene. International Journal of Hydrogen Energy, 2012, 37( 16): 11835– 11841
CrossRef ADS Google scholar
[93]
Gambini M, Stilo T, Vellini M. Selection of metal hydrides for a thermal energy storage device to support low-temperature concentrating solar power plants. International Journal of Hydrogen Energy, 2020, 45( 53): 28404– 28425
CrossRef ADS Google scholar
[94]
Mukherjee D, Höllerhage T, Leich V. . The nature of the heavy alkaline earth metal–hydrogen bond: synthesis, structure, and reactivity of a cationic strontium hydride cluster. Journal of the American Chemical Society, 2018, 140( 9): 3403– 3411
CrossRef ADS Google scholar
[95]
Hosseinabadi N. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. International Journal of Hydrogen Energy, 2021, 46( 7): 5025– 5044
CrossRef ADS Google scholar
[96]
Bruzzone G, Costa G, Ferretti M. . Hydrogen storage in a beryllium substituted TiFe compound. International Journal of Hydrogen Energy, 1980, 5( 3): 317– 322
CrossRef ADS Google scholar
[97]
Li D, Ouyang Y, Li J. . Hydrogen storage of beryllium adsorbed on graphene doping with boron: first-principles calculations. Solid State Communications, 2012, 152( 5): 422– 425
CrossRef ADS Google scholar
[98]
Rahimi R, Solimannejad M. First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. International Journal of Hydrogen Energy, 2020, 45( 38): 19465– 19478
CrossRef ADS Google scholar
[99]
Wang Y J, Xu L, Qiao L H. . Ultra-high capacity hydrogen storage of B6Be2 and B8Be2 clusters. International Journal of Hydrogen Energy, 2020, 45( 23): 12932– 12939
CrossRef ADS Google scholar
[100]
Castillo-Alvarado F L, Ortiz-Lopez J, Arellano J S. . Hydrogen storage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Advances in Science and Technology (Owerri, Nigeria), 2010, 72 : 188– 195
CrossRef ADS Google scholar
[101]
Ghosh S, Padmanabhan V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature. International Journal of Hydrogen Energy, 2017, 42( 38): 24237– 24246
CrossRef ADS Google scholar
[102]
Beheshtian J, Ravaei I. Hydrogen storage by BeO nano-cage: a DFT study. Applied Surface Science, 2016, 368 : 76– 81
CrossRef ADS Google scholar
[103]
Liu J, Li K, Cheng H. . New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5−xAlx alloys. International Journal of Hydrogen Energy, 2017, 42( 39): 24904– 24914
CrossRef ADS Google scholar
[104]
Molinas B, Pontarollo A, Scapin M. . The optimization of MmNi5−xAlx hydrogen storage alloy for sea or lagoon navigation and transportation. International Journal of Hydrogen Energy, 2016, 41( 32): 14484– 14490
CrossRef ADS Google scholar
[105]
Mohammadshahi S S, Gould T, Gray E M. . An improved model for metal-hydrogen storage tanks–Part 1: model development. International Journal of Hydrogen Energy, 2016, 41( 5): 3537– 3550
CrossRef ADS Google scholar
[106]
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
CrossRef ADS Google scholar
[107]
Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34( 7): 2992– 3004
CrossRef ADS Google scholar
[108]
Chandra S, Sharma P, Muthukumar P. . Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 2020, 45( 15): 8794– 8809
CrossRef ADS Google scholar
[109]
Oi T, Maki K, Sakaki Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. Journal of Power Sources, 2004, 125( 1): 52– 61
CrossRef ADS Google scholar
[110]
Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017, 42( 52): 30661– 30682
CrossRef ADS Google scholar
[111]
Rodríguez Sánchez A, Klein H P, Groll M. Expanded graphite as heat transfer matrix in metal hydride beds. International Journal of Hydrogen Energy, 2003, 28( 5): 515– 527
CrossRef ADS Google scholar
[112]
Ferekh S, Gwak G, Kyoung S. . Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds during hydrogen charging process. International Journal of Hydrogen Energy, 2015, 40( 42): 14540– 14550
CrossRef ADS Google scholar
[113]
Eisapour A H, Naghizadeh A, Eisapour M. . Optimal design of a metal hydride hydrogen storage bed using a helical coil heat exchanger along with a central return tube during the absorption process. International Journal of Hydrogen Energy, 2021, 46( 27): 14478– 14493
CrossRef ADS Google scholar
[114]
Urunkar R U, Patil S D. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46( 37): 19486– 19497
CrossRef ADS Google scholar
[115]
Afzal M, Sharma P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements—part A. International Journal of Hydrogen Energy, 2021, 46( 24): 13116– 13130
CrossRef ADS Google scholar
[116]
Melnichuk M, Silin N, Peretti H A. Optimized heat transfer fin design for a metal-hydride hydrogen storage container. International Journal of Hydrogen Energy, 2009, 34( 8): 3417– 3424
CrossRef ADS Google scholar
[117]
Laurencelle F, Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 2007, 32( 14): 2957– 2964
CrossRef ADS Google scholar
[118]
Pohlmann C, Röntzsch L, Weißgärber T. . Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications. International Journal of Hydrogen Energy, 2013, 38( 3): 1685– 1691
CrossRef ADS Google scholar
[119]
Nguyen H Q, Shabani B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy, 2021, 46( 62): 31699– 31726
CrossRef ADS Google scholar
[120]
Li F, Zhao J, Tian D. . Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles. Journal of Applied Physics, 2009, 105( 4): 043707
CrossRef ADS Google scholar
[121]
Qu H, Du J, Pu C. . Effects of Co introduction on hydrogen storage properties of Ti-Fe-Mn alloys. International Journal of Hydrogen Energy, 2015, 40( 6): 2729– 2735
CrossRef ADS Google scholar
[122]
Zhang Y, Wei X, Gao J. . Electrochemical hydrogen storage behaviors of as-milled Mg-Ti-Ni-Co-Al-based alloys applied to Ni-MH battery. Electrochimica Acta, 2020, 342 : 136123
CrossRef ADS Google scholar
[123]
Zheng W, Song W, Wu T. . Experimental investigation and thermodynamic modeling of the ternary Ti-Fe-Mn system for hydrogen storage applications. Journal of Alloys and Compounds, 2022, 891 : 161957
CrossRef ADS Google scholar
[124]
Liu S, Qiu G, Liu X. . Structures and properties of TiMn2–5x(V4Fe)x(x = 0.30, 0.35) hydrogen storage alloys. Rare Metal Materials and Engineering, 2010, 39( 2): 214– 218
CrossRef ADS Google scholar
[125]
Dematteis E M, Dreistadt D M, Capurso G. . Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 2021, 874 : 159925
CrossRef ADS Google scholar
[126]
Yang T, Wang P, Xia C. . Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 2020, 45( 21): 12071– 12081
CrossRef ADS Google scholar
[127]
Nayebossadri S, Book D. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renewable Energy, 2019, 143 : 1010– 1021
CrossRef ADS Google scholar
[128]
Sathe R Y, Bae H, Lee H. . Hydrogen storage capacity of low-lying isomer of C24 functionalized with Ti. International Journal of Hydrogen Energy, 2020, 45( 16): 9936– 9945
CrossRef ADS Google scholar
[129]
Feng B, Zhang J, Zhong Q. . Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8( 6): 563– 568
CrossRef ADS Google scholar
[130]
Peng B, Zhang H, Shao H. . Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 2017, 5( 6): 399– 407
CrossRef ADS Google scholar
[131]
Wen T Z, Xie A Z, Li J L. . Novel Ti-decorated borophene χ3 as potential high-performance for hydrogen storage medium. International Journal of Hydrogen Energy, 2020, 45( 53): 29059– 29069
CrossRef ADS Google scholar
[132]
Lebon A, Carrete J, Gallego L J. . Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. International Journal of Hydrogen Energy, 2015, 40( 14): 4960– 4968
CrossRef ADS Google scholar
[133]
Grew K N, Brownlee Z B, Shukla K C. . Assessment of alane as a hydrogen storage media for portable fuel cell power sources. Journal of Power Sources, 2012, 217 : 417– 430
CrossRef ADS Google scholar
[134]
Wang L, Rawal A, Aguey-Zinsou K F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chemical Engineering Science, 2019, 194 : 64– 70
CrossRef ADS Google scholar
[135]
Liang L, Wang C, Ren M. . Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Applied Materials & Interfaces, 2021, 13( 23): 26998– 27005
CrossRef ADS Google scholar
[136]
Ianni E, Sofianos M V, Rowles M R. . Synthesis of NaAlH4/Al composites and their applications in hydrogen storage. International Journal of Hydrogen Energy, 2018, 43( 36): 17309– 17317
CrossRef ADS Google scholar
[137]
Urbanczyk R, Peinecke K, Felderhoff M. . Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. International Journal of Hydrogen Energy, 2014, 39( 30): 17118– 17128
CrossRef ADS Google scholar
[138]
Huang Y, Shao H, Zhang Q. . Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy, 2020, 45( 52): 28116– 28122
CrossRef ADS Google scholar
[139]
Montero J, Ek G, Sahlberg M. . Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scripta Materialia, 2021, 194 : 113699
CrossRef ADS Google scholar
[140]
Edalati P, Floriano R, Mohammadi A. . Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Materialia, 2020, 178 : 387– 390
CrossRef ADS Google scholar
[141]
Tu B, Wang H, Wang Y. . Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle. International Journal of Hydrogen Energy, 2022, 47( 33): 14952– 14960
CrossRef ADS Google scholar
[142]
Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). International Journal of Hydrogen Energy, 2014, 39( 18): 9904– 9910
CrossRef ADS Google scholar
[143]
Liu P, Xie X, Xu L. . Hydrogen storage properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Progress in Natural Science, 2017, 27( 6): 652– 657
CrossRef ADS Google scholar
[144]
Hu J, Shen H, Jiang M. . A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials (Basel, Switzerland), 2019, 9( 3): 461
CrossRef ADS Google scholar
[145]
Shen H, Zhang J, Hu J. . A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage. Nanomaterials (Basel, Switzerland), 2019, 9( 2): 248
CrossRef ADS Google scholar
[146]
Higuchi K, Yamamoto K, Kajioka H. . Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. Journal of Alloys and Compounds, 2002, 330–332 : 526– 530
CrossRef ADS Google scholar
[147]
Reddy G L N, Kumar S. Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. International Journal of Hydrogen Energy, 2014, 39( 9): 4421– 4426
CrossRef ADS Google scholar
[148]
Han B, Yu S, Wang H. . Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia, 2022, 216 : 114736
CrossRef ADS Google scholar
[149]
Liu S, Liu J, Liu X. . Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16( 3): 331– 336
CrossRef ADS Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China for the Distinguished Young Scholars (Grant No. 51825602).

版权

2022 Higher Education Press 2022
PDF(3123 KB)

Accesses

Citation

Detail

段落导航
相关文章

/