Emerging roles of liquid metals in carbon neutrality

PDF(669 KB)
PDF(669 KB)
Frontiers in Energy ›› 2022, Vol. 16 ›› Issue (3) : 393-396. DOI: 10.1007/s11708-022-0829-5

作者信息 +

Emerging roles of liquid metals in carbon neutrality

Author information +
History +

引用本文

导出引用
. . Frontiers in Energy. 2022, 16(3): 393-396 https://doi.org/10.1007/s11708-022-0829-5

参考文献

[1]
International Energy Agency. An energy sector roadmap to carbon neutrality in China. 2021− 9−15, available at website of iea gov
[2]
Liu Z, Deng Z, He G. . Challenges and opportunities for carbon neutrality in China. Nature Reviews. Earth & Environment, 2022, 3( 2): 141– 155
CrossRef ADS Google scholar
[3]
Deng Y G Liu J. Liquid Metals for Advanced Energy Applications. New York: AIP Publishing, 2022
[4]
Chen S, Wang H, Zhao R. . Liquid metal composites. Matter, 2020, 2( 6): 1446– 1480
CrossRef ADS Google scholar
[5]
Liu J. Advanced Liquid Metal Cooling for Chip, Device and System. Shanghai: Shanghai Scientific & Technical Publishers, 2020
[6]
Liu J Wang L. Principle and Application of Liquid Metal 3D Printing Technology. Shanghai: Shanghai Scientific & Technical Publishers, 2019
[7]
Cao L X, Yin T, Jin M X. . Flexible circulated-cooling liquid metal coil for induction heating. Applied Thermal Engineering, 2019, 162 : 114260
CrossRef ADS Google scholar
[8]
Guo S, Wang P, Zhang J. . Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging. Frontiers in Energy, 2019, 13( 3): 474– 482
CrossRef ADS Google scholar
[9]
Liu C He Z. High heat flux thermal management through liquid metal driven with electromagnetic induction pump. Frontiers in Energy, 2022, online, http://doi.org/10.1007/s11708-022-0825-9
[10]
Sun P Zhang H Jiang F C. Self-driven liquid metal cooling connector for direct current high power charging to electric vehicle. eTransportation 2021, 10: 100132
[11]
West D, Taylor J A, Krupenkin T. Alternating current liquid metal vortex magnetohydrodynamic generator. Energy Conversion and Management, 2020, 223 : 113223
CrossRef ADS Google scholar
[12]
Deng Y G, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: a review. Applied Thermal Engineering, 2021, 193 : 117021
CrossRef ADS Google scholar
[13]
Deng Y G Liu J Zhou Y X. Study on liquid metal cooling of photovoltaic cell. In: Inaugural US-EU-China Thermophysics Conference-Renewable Energy, Beijing, China, 2009
[14]
Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management. In: Sparrow E M, Abraham J P, Gorman J M, eds. Advances in Heat Transfer, 2018, 50 : 187– 300
CrossRef ADS Google scholar
[15]
Zhang X D, Yang X H, Zhou Y X. . Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Conversion and Management, 2019, 185 : 248– 258
CrossRef ADS Google scholar
[16]
Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation–basics and applications. Solar Energy Materials and Solar Cells, 2021, 222 : 110925
CrossRef ADS Google scholar
[17]
Kim H, Boysen D A, Newhouse J M. . Liquid metal batteries: past, present, and future. Chemical Reviews, 2013, 113( 3): 2075– 2099
CrossRef ADS Google scholar
[18]
Ouchi T, Kim H, Spatocco B L. . Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nature Communications, 2016, 7( 1): 10999
CrossRef ADS Google scholar
[19]
Wang K L, Jiang K, Chung B. . Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature, 2014, 514( 7522): 348– 350
CrossRef ADS Google scholar
[20]
Li H M, Wang K L, Cheng S J. . High performance liquid metal battery with environmentally friendly antimony-tin positive electrode. ACS Applied Materials & Interfaces, 2016, 8( 20): 12830– 12835
CrossRef ADS Google scholar
[21]
Liu J Wang Q. Liquid Metal Printed Electronics. Shanghai: Shanghai Scientific & Technical Publishers, 2019
[22]
Xu S, Liu J. Metal-based direct hydrogen generation as unconventional high density energy. Frontiers in Energy, 2019, 13( 1): 27– 53
CrossRef ADS Google scholar
[23]
Xu S, Zhao X, Liu J. Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renewable & Sustainable Energy Reviews, 2018, 92 : 17– 37
CrossRef ADS Google scholar
[24]
Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology, 2021, 32( 9): 092001
CrossRef ADS Google scholar
[25]
Esrafilzadeh D, Zavabeti A, Jalili R. . Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10( 1): 865
CrossRef ADS Google scholar
[26]
Xing Z, Fu J, Chen S. . Perspective on gallium-based room temperature liquid metal batteries. Frontiers in Energy, 2022, 16( 1): 23– 48
CrossRef ADS Google scholar
[27]
Ding Y, Guo X L, Qian Y M. . Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Advanced Materials, 2020, 32( 30): 2002577
CrossRef ADS Google scholar

Acknowledgments

This work was partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars.

版权

2022 Higher Education Press
PDF(669 KB)

Accesses

Citation

Detail

段落导航
相关文章

/