Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration
Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration
[1] |
ThibautA, ChiaraD. Is cooling the future of heating? 2020–12–13, available at website of iea gov
|
[2] |
Abas N, Kalair A R, Khan N. Natural and synthetic refrigerants, global warming: a review. Renewable & Sustainable Energy Reviews, 2018, 90
CrossRef
ADS
Google scholar
|
[3] |
HawkenP. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. Penguin Books, 2018
|
[4] |
Kobeco P, Kurtchatov I V. Dielectric properties of Rochelle salt crystal. Zeitschrift für Physik, 1930, 66
|
[5] |
Mischenko A S, Zhang Q, Scott J F. Electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311( 5765): 1270– 1271
CrossRef
ADS
Google scholar
|
[6] |
Neese B, Chu B, Lu S G. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321( 5890): 821– 823
CrossRef
ADS
Google scholar
|
[7] |
Qian X S, Lu S G, Li X. Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Advanced Functional Materials, 2013, 23( 22): 2894– 2898
CrossRef
ADS
Google scholar
|
[8] |
Shi J, Han D, Li Z. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3( 5): 1200– 1225
CrossRef
ADS
Google scholar
|
[9] |
Crossley S, Usui T, Nair B. Direct electrocaloric measurement of 0. 9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy. Applied Physics Letters, 2016, 108( 3): 032902–
CrossRef
ADS
Google scholar
|
[10] |
Hou Y, Yang L, Qian X. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions–Royal Society. Mathematical, Physical, and Engineering Sciences, 2016, 374( 2074): 20160055–
CrossRef
ADS
Google scholar
|
[11] |
Moya X, Stern-Taulats E, Crossley S. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25( 9): 1360– 1365
CrossRef
ADS
Google scholar
|
[12] |
Chen X Z, Li X, Qian X S. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54( 20): 5299– 5302
CrossRef
ADS
Google scholar
|
[13] |
Qian X S, Ye H J, Zhang Y T. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24( 9): 1300– 1305
CrossRef
ADS
Google scholar
|
[14] |
Nair B, Usui T, Crossley S. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575( 7783): 468– 472
CrossRef
ADS
Google scholar
|
[15] |
Yang L, Qian X, Koo C. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22
CrossRef
ADS
Google scholar
|
[16] |
Chen Y, Qian J, Yu J. An all-scale hierarchical architecture induces colossal room–temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32( 30): 1907927–
CrossRef
ADS
Google scholar
|
[17] |
Ma R, Zhang Z, Tong K. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357( 6356): 1130– 1134
CrossRef
ADS
Google scholar
|
[18] |
Meng Y, Zhang Z, Wu H. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5( 12): 996– 1002
CrossRef
ADS
Google scholar
|
[19] |
Gu H, Qian X, Li X. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102( 12): 122904–
CrossRef
ADS
Google scholar
|
[20] |
Annapragada, S. R. High-efficiency solid-state heat pump module. 2017, available at website of energy gov
|
[21] |
Wang Y, Zhang Z, Usui T. A high-performance solid-state electrocaloric cooling system. Science, 2020, 370( 6512): 129– 133
CrossRef
ADS
Google scholar
|
[22] |
Torelló A, Lheritier P, Usui T. Giant temperature span in electrocaloric regenerator. Science, 2020, 370( 6512): 125– 129
CrossRef
ADS
Google scholar
|
[23] |
Cui H, Zhang Q, Bo Y. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6( 1): 258– 268
CrossRef
ADS
Google scholar
|
[24] |
Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 2015, 88
CrossRef
ADS
Google scholar
|
[25] |
Li Q, Shi J, Han D. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190
CrossRef
ADS
Google scholar
|
[26] |
Shi J, Li Q, Gao T. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121
CrossRef
ADS
Google scholar
|
[27] |
Peng B, Zhang Q, Lyu Y. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47
CrossRef
ADS
Google scholar
|
[28] |
Qian X, Han D, Zheng L. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600( 7890): 664– 669
CrossRef
ADS
Google scholar
|
[29] |
Qian X, Ye H J, Yang T. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25( 32): 5134– 5139
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |