Thermal transport in organic/inorganic composites

PDF(391 KB)
PDF(391 KB)
Frontiers in Energy ›› 2018, Vol. 12 ›› Issue (1) : 72-86. DOI: 10.1007/s11708-018-0526-6

作者信息 +

Thermal transport in organic/inorganic composites

Author information +
History +

Abstract

Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.

Keywords

thermal conductivity / organic/inorganic composites / effective medium theory / thermal percolation theory / interfacial thermal resistance

引用本文

导出引用
. . Frontiers in Energy. 2018, 12(1): 72-86 https://doi.org/10.1007/s11708-018-0526-6

参考文献

[1]
Song S H, Park K H, Kim B H, Choi Y W, Jun G H, Lee D J, Kong B S, Paik K W, Jeon S. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials, 2013, 25(5): 732–737
CrossRef ADS Pubmed Google scholar
[2]
Prasher R S, Chang J Y, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C. Nano and micro technology-based next-generation package-level cooling solutions. Intel Technology Journal, 2005, 09(04): 285–296
CrossRef ADS Google scholar
[3]
Felba J. Thermally conductive nanocomposites. In: Felba J. Nano-bio-electronic, Photonic and MEMS Packaging. New York: Springer, Science, 2010
[4]
Renteria J, Legedza S, Salgado R, Balandin M P, Ramirez S, Saadah M, Kargar F, Balandin A A. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Materials & Design, 2015, 88: 214–221
CrossRef ADS Google scholar
[5]
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
CrossRef ADS Pubmed Google scholar
[6]
Zhang B, Sun J, Katz H E, Fang F, Opila R L. Promising thermoelectric properties of commercial PEDOT: PSS materials and their bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2010, 2(11): 3170–3178
CrossRef ADS Pubmed Google scholar
[7]
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667
CrossRef ADS Pubmed Google scholar
[8]
Wang Y, Zhang S M, Deng Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(9): 3554–3559
CrossRef ADS Google scholar
[9]
Hong C T, Lee W, Kang Y H, Yoo Y, Ryu J, Cho S Y, Jang K S. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(23): 12314–12319
CrossRef ADS Google scholar
[10]
Zhou C, Dun C, Wang Q, Wang K, Shi Z, Carroll D L, Liu G, Qiao G. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Applied Materials & Interfaces, 2015, 7(38): 21015–21020
CrossRef ADS Pubmed Google scholar
[11]
Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Materials, 2015, 14(6): 622–627
CrossRef ADS Pubmed Google scholar
[12]
Wang H, Hsu J H, Yi S I, Kim S L, Choi K, Yang G, Yu C. Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Advanced Materials, 2015, 27(43): 6855–6861
CrossRef ADS Pubmed Google scholar
[13]
Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F, Huang D, Xu W, Yue P, Guan Y S, Jiao F, Sun Y, Tang D, Di C A, Yi Y, Zhu D. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17): 3351–3358
CrossRef ADS Pubmed Google scholar
[14]
Liu Y, Song Z, Zhang Q, Zhou Z, Tang Y, Wang L, Zhu J, Luo W, Jiang W. Preparation of bulk AgNWs/PEDOT: PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Advances, 2015, 5(56): 45106–45112
CrossRef ADS Google scholar
[15]
Chen Y, He M, Liu B, Bazan G C, Zhou J, Liang Z. Bendable n-type metallic nanocomposites with large thermoelectric power factor. Advanced Materials, 2017, 29(4): 1604752
CrossRef ADS Pubmed Google scholar
[16]
Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D, Ren Z, Fleurial J, Gogna P. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053
CrossRef ADS Google scholar
[17]
Zhou J, Li X, Chen G, Yang R G. Semiclassical model for thermoelectric transport in nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(11): 115308
CrossRef ADS Google scholar
[18]
Goyala V, Balandinb A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113
CrossRef ADS Google scholar
[19]
Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47(6): 2036–2045
CrossRef ADS Google scholar
[20]
Haggenmueller R, Guthy C, Lukes J R, Fischer J E, Winey K I. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules, 2007, 40(7): 2417–2421
CrossRef ADS Google scholar
[21]
Min C, Yu D, Cao J, Wang G, Feng L. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 2013, 55: 116–125
CrossRef ADS Google scholar
[22]
Hung M T, Choi O, Ju Y S, Hahn H T. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Applied Physics Letters, 2006, 89(2): 023117
CrossRef ADS Google scholar
[23]
Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites. Part A, Applied Science and Manufacturing, 2009, 40(6–7): 830–836
CrossRef ADS Google scholar
[24]
He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Composites Science and Technology, 2007, 67(11–12): 2493–2499
CrossRef ADS Google scholar
[25]
Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Letters, 2013, 13(2): 550–554
CrossRef ADS Pubmed Google scholar
[26]
Zeng J L, Cao Z, Yang D W, Sun L X, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389
CrossRef ADS Google scholar
[27]
Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7–8): 1196–1200
CrossRef ADS Google scholar
[28]
Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Applied Materials & Interfaces, 2011, 3(11): 4396–4403
CrossRef ADS Pubmed Google scholar
[29]
Manchado M A L, Valentini L, Biagiotti J, Kenny J M. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 2005, 43(7): 1499–1505
CrossRef ADS Google scholar
[30]
Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 2011, 36(7): 914–944
CrossRef ADS Google scholar
[31]
Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 2012, 12(2): 861–867
CrossRef ADS Pubmed Google scholar
[32]
Shenogina N, Shenogin S, Xue L, Keblinski P. On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters, 2005, 87(13): 133106
CrossRef ADS Google scholar
[33]
Shi J, Ger M, Liu Y, Fan Y, Wen N, Lin C, Pu N. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon, 2013, 51: 365–372
CrossRef ADS Google scholar
[34]
Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Advanced Materials, 2008, 20(24): 4740–4744
CrossRef ADS Google scholar
[35]
Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734
CrossRef ADS Pubmed Google scholar
[36]
Foygel M, Morris R D, Anez D, French S, Sobolev V L. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(10): 104201
CrossRef ADS Google scholar
[37]
Coleman J N, Curran S, Dalton A B, Davey A P, McCarthy B, Blau W, Barklie R C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(12): R7492–R7495
CrossRef ADS Google scholar
[38]
Wang L, Dang Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 2005, 87(4): 042903
CrossRef ADS Google scholar
[39]
Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics, 1973, 45(4): 574–588
CrossRef ADS Google scholar
[40]
Nakayama T, Yakubo K, Orbach R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Reviews of Modern Physics, 1994, 66(2): 381–443
CrossRef ADS Google scholar
[41]
Balberg I, Anderson C H, Alexander S, Wagner N. Excluded volume and its relation to the onset of percolation. Physical Review B: Condensed Matter and Materials Physics, 1984, 30(7): 3933–3943
CrossRef ADS Google scholar
[42]
Tian W, Yang R. Phonon transport and thermal conductivity percolation in random nanoparticle composites. Computer Modeling in Engineering & Sciences, 2008, 24: 123–141
[43]
Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G. Thermal percolation in stable graphite suspensions. Nano Letters, 2012, 12(1): 188–192
CrossRef ADS Pubmed Google scholar
[44]
Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau W J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030
CrossRef ADS Google scholar
[45]
Last B J, Thouless D J. Percolation theory and electrical conductivity. Physical Review Letters, 1971, 27(25): 1719–1721
CrossRef ADS Google scholar
[46]
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
CrossRef ADS Pubmed Google scholar
[47]
Veca M L, Meziani M J, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell J W, Sun Y. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials, 2009, 21(20): 2088–2092
CrossRef ADS Google scholar
[48]
Jang W, Chen Z, Bao W, Lau C N, Dames C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters, 2010, 10(10): 3909–3913
CrossRef ADS Pubmed Google scholar
[49]
Yu A, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C, 2007, 111(21): 7565–7569
CrossRef ADS Google scholar
[50]
Tian X, Itkis M E, Bekyarova E B, Haddon R C. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scientific Reports, 2013, 3(1): 1710
CrossRef ADS Google scholar
[51]
Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polymer Composites, 2014, 35: 1087–1092
[52]
Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L. Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Composites Science and Technology, 2015, 109: 25–31
CrossRef ADS Google scholar
[53]
Ding P, Su S, Song N, Tang S, Liu Y, Shi L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon, 2014, 66: 576–584
CrossRef ADS Google scholar
[54]
Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials, 2015, 27(6): 2100–2106
CrossRef ADS Google scholar
[55]
Shtein M, Nadiv R, Buzaglo M, Regev O. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Applied Materials & Interfaces, 2015, 7(42): 23725–23730
CrossRef ADS Pubmed Google scholar
[56]
Guo W, Chen G. Fabrication of graphene/epoxy resin composites with much enhanced thermal conductivity via ball milling technique. Journal of Applied Polymer Science, 2014, 131(15): 40565
CrossRef ADS Google scholar
[57]
Eksik O, Bartolucci S F, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon, 2016, 101: 239–244
CrossRef ADS Google scholar
[58]
Ma L, Wang J, Marconnet A M, Barbati A C, McKinley G H, Liu W, Chen G. Viscosity and thermal conductivity of stable graphite suspensions near percolation. Nano Letters, 2015, 15(1): 127–133
CrossRef ADS Pubmed Google scholar
[59]
Swartz E T, Pohl R O. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605–668
CrossRef ADS Google scholar
[60]
Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161
CrossRef ADS Pubmed Google scholar
[61]
Kumar P, Shahzad F, Yu S, Hong S M, Kim Y, Koo C M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494–500
CrossRef ADS Google scholar
[62]
Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon, 2016, 101: 120–128
CrossRef ADS Google scholar
[63]
Kim H S, Bae H S, Yu J, Kim S Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6(1): 26825
CrossRef ADS Pubmed Google scholar
[64]
Lin C, Chung D D L. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47(1): 295–305
CrossRef ADS Google scholar
[65]
Chatterjee S, Nafezarefi F, Tai N H, Schlagenhauf L, Nüesch F A, Chu B T T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012, 50(15): 5380–5386
CrossRef ADS Google scholar
[66]
Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra A K, Liu L. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014, 26(15): 4459–4465
CrossRef ADS Google scholar
[67]
De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539
CrossRef ADS Pubmed Google scholar
[68]
Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339(6116): 182–186
CrossRef ADS Pubmed Google scholar
[69]
Marconnet A M, Yamamoto N, Panzer M A, Wardle B L, Goodson K E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano, 2011, 5(6): 4818–4825
CrossRef ADS Pubmed Google scholar
[70]
Lizundia E, Oleaga A, Salazar A, Sarasua J R. Nano- and microstructural effects on thermal properties of poly(L-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53(12): 2412–2421
CrossRef ADS Google scholar
[71]
Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, 2011, 49(2): 495–500
CrossRef ADS Google scholar
[72]
Rahmat M, Hubert P. Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 2011, 72(1): 72–84
CrossRef ADS Google scholar
[73]
Yu W, Fu J, Chen L, Zong P, Yin J, Shang D, Lu Q, Chen H, Shi L. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic-inorganic multilayer covalently grafted carbon nanotubes. Composites Science and Technology, 2016, 125: 90–99
CrossRef ADS Google scholar
[74]
Zhao J, Du F, Cui W, Zhu P, Zhou X, Xie X. Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multi-walled carbon nanotube composites. Composites Part A, Applied Science and Manufacturing, 2014, 58: 1–6
CrossRef ADS Google scholar
[75]
Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin A A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6): 5114–5121
CrossRef ADS Pubmed Google scholar
[76]
Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91(20): 201910
CrossRef ADS Google scholar
[77]
Kapadia R S, Louie B M, Bandaru P R. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube-polymer composites. Journal of Heat Transfer, 2013, 136(1): 011303
CrossRef ADS Google scholar
[78]
Lu C, Mai Y W. Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43(17): 6012–6015
CrossRef ADS Google scholar
[79]
Sato K, Ijuin A, Hotta Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 2015, 41(8): 10314–10318
CrossRef ADS Google scholar
[80]
Zhou W, Yu D. Thermal and dielectric properties of the aluminum particle/epoxy resin composites. Journal of Applied Polymer Science, 2010, 118(6): 3156–3166
CrossRef ADS Google scholar
[81]
Balachander N, Seshadri I, Mehta R J, Schadler L S, Borca-Tasciuc T, Keblinski P, Ramanath G. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Applied Physics Letters, 2013, 102(9): 093117
CrossRef ADS Google scholar
[82]
Zeng J L, Cao Z, Yang D W, Sun L, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389
CrossRef ADS Google scholar
[83]
Xu J, Munari A, Dalton E, Mathewson A, Razeeb K M. Silver nanowire array-polymer composite as thermal interface material. Journal of Applied Physics, 2009, 106(12): 124310
CrossRef ADS Google scholar
[84]
Zhu D, Yu W, Du H, Chen L, Li Y, Xie H.Thermal conductivity of composite materials containing copper nanowires. Journal of Nanomaterials, 2016, 3089716
[85]
Wang S, Cheng Y, Wang R, Sun J, Gao L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Applied Materials & Interfaces, 2014, 6(9): 6481–6486
CrossRef ADS Pubmed Google scholar
[86]
Nikkeshi S, Kudo M, Masuko T. Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites. Journal of Applied Polymer Science, 1998, 69(13): 2593–2598
CrossRef ADS Google scholar
[87]
Szostak M, Andezejewski J. Thermal properties of polymer-metal composites. Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers, 2014
[88]
Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1–2): 155–165
CrossRef ADS Google scholar
[89]
Choi S, Kim J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Composites Part B, Engineering, 2013, 51: 140–147
CrossRef ADS Google scholar
[90]
Gu J, Liang C, Dang J, Dong W, Zhang Q. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Advances, 2016, 6(42): 35809–35814
CrossRef ADS Google scholar
[91]
Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceramics International, 2014, 40(1): 2047–2056
CrossRef ADS Google scholar
[92]
Yu W, Wang M, Xie H, Hu Y, Chen L. Silicon carbide nanowires suspensions with high thermal transport properties. Applied Thermal Engineering, 2016, 94: 350–354
CrossRef ADS Google scholar
[93]
Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta, 1998, 320(1–2): 177–186
CrossRef ADS Google scholar
[94]
Bujard P. Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. Conference on Thermal Phenomena in the Fabrication & Operation of Electronic Components: I-therm, 1988, 41–49
[95]
Yung K C, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. Journal of Applied Polymer Science, 2007, 106(6): 3587–3591
CrossRef ADS Google scholar
[96]
Li T L, Hsu S L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. Journal of Physical Chemistry B, 2010, 114(20): 6825–6829
CrossRef ADS Pubmed Google scholar
[97]
Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 2013, 23(14): 1824–1831
CrossRef ADS Google scholar
[98]
Lin Z, Liu Y, Raghavan S, Moon K S, Sitaraman S K, Wong C P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Applied Materials & Interfaces, 2013, 5(15): 7633–7640
CrossRef ADS Pubmed Google scholar
[99]
Takahashi F, Ito K, Morikawa J, Hashimoto T, Hatta I. Characterization of heat conduction in a polymer film. Japanese Journal of Applied Physics, 2004, 43(10): 7200–7204
CrossRef ADS Google scholar
[100]
Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Applied Materials & Interfaces, 2015, 7(23): 13000–13006
CrossRef ADS Pubmed Google scholar
[101]
Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113
CrossRef ADS Google scholar
[102]
Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 2010, 48(4): 1171–1176
CrossRef ADS Google scholar
[103]
Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37(5): 727–734
CrossRef ADS Google scholar
[104]
Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Advances, 2014, 4(40): 21010–21017
CrossRef ADS Google scholar
[105]
Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C P. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Scientific Reports, 2016, 6(1): 19394
CrossRef ADS Pubmed Google scholar
[106]
Garnett J C M. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1904, 203(359–-371): 385–420
CrossRef ADS Google scholar
[107]
Bruggeman D A G. Calculation of different physical constants of heterogeneous substances, I. dielectric constants and conductances of mixers of isotropic substances. Annalen der Physik. Leipzig, 1935, 24: 636–679 (in German)
[108]
Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191
CrossRef ADS Google scholar
[109]
Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1973, 335: 355–367
[110]
Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1991, 432: 445–465
[111]
Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1990, 430: 285–313
[112]
Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research, 2003, 5(1/2): 167–171
CrossRef ADS Google scholar
[113]
Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6): 36–44
CrossRef ADS Google scholar
[114]
Patel H E, Das S K, Sundararajan T, Nair A S, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 2003, 83(14): 2931–2933
CrossRef ADS Google scholar
[115]
Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252–2254
CrossRef ADS Google scholar
[116]
Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78(6): 718–720
CrossRef ADS Google scholar
[117]
Keblinski P, Phillpot S R, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45(4): 855–863
CrossRef ADS Google scholar
[118]
Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for heat conduction in nanofluids. Physical Review Letters, 2004, 93(14): 144301
CrossRef ADS Pubmed Google scholar
[119]
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 2003, 49(4): 1038–1043
CrossRef ADS Google scholar
[120]
Kapitza P L. Heat transfer and superfluidity of helium II. Physical Review, 1941, 20: 354–355
[121]
Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(19): 195423
CrossRef ADS Google scholar
[122]
Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 1987, 21(6): 508–515
CrossRef ADS Google scholar
[123]
Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. Journal of Applied Physics, 1987, 61(8): 2840–2843
CrossRef ADS Google scholar
[124]
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699
CrossRef ADS Google scholar
[125]
Nan C W, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85(16): 3549–3551
CrossRef ADS Google scholar
[126]
Ordonez-Miranda J, Yang R. Effect of a metallic coating on the thermal conductivity of carbon nanofiber–dielectric matrix composites. Composites Science and Technology, 2015, 109: 18–24
CrossRef ADS Google scholar
[127]
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A model for the effective thermal conductivity of metal-nonmetal particulate composites. Journal of Applied Physics, 2012, 111(4): 044319
CrossRef ADS Google scholar
[128]
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. Journal of Applied Physics, 2013, 114(6): 064306
CrossRef ADS Google scholar
[129]
Minnich A, Chen G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Applied Physics Letters, 2007, 91(7): 073105
CrossRef ADS Google scholar
[130]
Ordonez-Miranda J, Yang R, Alvarado-Gil J J. On the thermal conductivity of particulate nanocomposites. Applied Physics Letters, 2011, 98(23): 233111
CrossRef ADS Google scholar
[131]
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2014, 14(3): 295–300
CrossRef ADS Pubmed Google scholar
[132]
Agari Y, Ueda A, Tanaka M, Nagai S. Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. Journal of Applied Polymer Science, 1990, 40(56): 929–941
CrossRef ADS Google scholar
[133]
Wang B, Zhou L, Peng X. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer, 2003, 46(14): 2665–2672
CrossRef ADS Google scholar
[134]
Yu K W. Effective nonlinear response of fractal clusters. Physical Review B: Condensed Matter, 1994, 49(14): 9989–9992
CrossRef ADS Pubmed Google scholar
[135]
Devpura A, Phelan P E, Prasher R S. Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Microscale Thermophysical Engineering, 2001, 5(3): 177–189
CrossRef ADS Google scholar
[136]
Duong H M, Papavassiliou D V, Lee L L, Mullen K J. Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Applied Physics Letters, 2005, 87(1): 013101
CrossRef ADS Google scholar
[137]
Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 2007, 46(9): 842–847
CrossRef ADS Google scholar
[138]
Duong H M, Yamamoto N, Papavassiliou D V, Maruyama S, Wardle B L. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites. Nanotechnology, 2009, 20(15): 155702
CrossRef ADS Pubmed Google scholar
[139]
Kumar S, Alam M A, Murthy J Y. Effect of percolation on thermal transport in nanotube composites. Applied Physics Letters, 2007, 90(10): 104105
CrossRef ADS Google scholar
[140]
Kumar S, Murthy J Y, Alam M A. Percolating conduction in finite nanotube networks. Physical Review Letters, 2005, 95(6): 066802
CrossRef ADS Pubmed Google scholar
[141]
Tian W, Yang R. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Applied Physics Letters, 2007, 90(26): 263105
CrossRef ADS Google scholar

Acknowledgments

The work is supported by the National Key Research & Development Program of China (Grant No. 2017YFB0406000), the program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. TP2014012), and the Shanghai Committee of Science and Technology (Grant No. 17ZR1447900).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11708-018-0526-6 and is accessible for authorized users.

版权

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(391 KB)

Accesses

Citation

Detail

段落导航
相关文章

/