Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions

PDF(615 KB)
PDF(615 KB)
Frontiers in Energy ›› 2017, Vol. 11 ›› Issue (4) : 452-460. DOI: 10.1007/s11708-017-0504-4

作者信息 +

Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions

Author information +
History +

Abstract

Research on applying a supercritical carbon dioxide power cycle(S-CO2) to concentrating solar power (CSP)instead of a steam Rankine cycle or an air Brayton cycle has beenrecently conducted. An S-CO2 system is suitablefor CSP owing to its compactness, higher efficiency, and dry-coolingcapability. At the Korea Institute of Energy Research (KIER), to implementan S-CO2 system, a 10 kWe class test loop witha turbine-alternator-compressor (TAC) using gas foil bearings wasdeveloped. A basic sub-kWe class test loop with a high-speed radialtype turbo-generator and a test loop with a capability of tens ofkWe with an axial type turbo-generator were then developed. To solvethe technical bottleneck of S-CO2 turbomachinery,a partial admission nozzle and oil-lubrication bearings were usedin the turbo-generators. To experience the closed-power cycle anddevelop an operational strategy of S-CO2 operatedat high pressure, an organic Rankine cycle (ORC) operating test usinga refrigerant as the working fluid was conducted owing to its operationalcapability at relatively low-pressure conditions of approximately30 to 40 bar. By operating the sub-kWe class test loop using R134aas the working fluid instead of CO2, an averageturbine power of 400 W was obtained.

Keywords

supercritical CO2 / power cycle / turbomachinery / compressor / turbine

引用本文

导出引用
. . Frontiers in Energy. 2017, 11(4): 452-460 https://doi.org/10.1007/s11708-017-0504-4

参考文献

[1]
Dostal V, Driscoll  M, Hejzlar P . A supercritical carbon dioxidecycle for next generation nuclear reactors. Massachusetts Institute of Technology,MA 2004, MIT-ANP-TR-100
[2]
Wright S A, Radel  R F, Vernon  M E, Rochau  G E, Pickard  P S. Operation and analysis of a supercritical CO2 Brayton cycle. SANDIA REPORT, 2010: SAND2010–0171
[3]
Pasch J J, Conboy  T M, Fleming  D D, Rochau  G E. Supercritical CO2 recompression Brayton cycle: completed assemblydescription. SANDIA REPORT, 2012:SAND 2012–9546
[4]
Conboy T, Wright  S A, Pasch  J, Fleming D ,  Rochau G ,  Fuller R . Performance characteristics of an operating supercriticalCO2 Brayton cycle.  ASME Turbo Expo: Turbine Technical Conference & Exposition, 2012, 134(11): GT2012–68415
[5]
Conboy T, Pasch  J, Fleming D . Control of a supercritical CO2 recompression Brayton cycle demonstration loop. Asme Turbo Expo: Turbine Technical Conference & Exposition, 2013, 135(11): GTP–13–1198
[6]
Clementoni E M ,  Cox T L . Steady-state power operation of a supercritical carbon dioxide Brayton cycle. ASME Turbo Expo: Turbine Technical Conference & Exposition, 2014: GT2014–25336
[7]
Clementoni E M ,  Cox T L . Practical aspects of supercritical carbon dioxide Brayton system testing. Proceedings of the 4th International Symposium-SupercriticalCO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
[8]
Kalra C J. Development of high efficiency hot gas turbo-expanderfor optimized CSP supercritical CO2 power block operation. Proceedings of the 4th InternationalSymposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
[9]
Moore J, Brun  K, Evans N ,  Bueno P ,  Kalra C J . Development of a 1 MWe supercriticalCO2 Brayton cycle test loop.  Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
[10]
Held T J. Initial test results of a megawatt-class supercriticalCO2 heat engine. Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania, 2014
[11]
Zhang Z, Ma  Y, Li M ,  Zhao L. Recent advances of energy recovery expanders in the Transcritical CO2 refrigeration cycle. HVAC & R Research, 2013, 19(4): 376–384
[12]
Cho J, Choi  M, Baik Y J ,  Lee G, Ra  H S, Kim  B, Kim M . Development of the turbomachinery for the supercritical CO2 power cycle. International Journal ofEnergy Research, 2016, 40(5): 587–599
CrossRef ADS Google scholar
[13]
Cho J, Shin  H, Cho J ,  Ra H S ,  Roh C, Lee  B, Lee G ,  Baik Y J . Development of the supercritical carbondioxide power cycle experimental loop with a turbo-generator. Asme Turbo Expo: Turbomachinery Technical Conference & Exposition, 2016: GT2017–64287

Acknowledgments

This work was conducted under theframework of Research and Development Program of the Korea Instituteof Energy Research (KIER) (B7-2414). In addition, this work was supportedby the On Demand Development Program of Core Technology for IndustrialFields (10063187, Engineering Technique for Power Generation SystemDesign using Industry Waste Heat), funded by the Ministry of Trade,Industry & Energy (MI, Korea).

版权

2017 Higher Education Press and Springer-Verlag GmbHGermany
PDF(615 KB)

Accesses

Citation

Detail

段落导航
相关文章

/