REVIEW

A review of factors affecting the success of membrane protein crystallization using bicelles

  • Ann C. KIMBLE-HILL
Expand
  • Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received date: 04 Jan 2012

Accepted date: 25 Mar 2012

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Several reports have been published detailing various platforms for obtaining crystals of membrane proteins to determine their structure including those that use disk shaped bilayers called bicelles. While these crystals have been readily grown and used for X-ray diffraction, the general understanding as to why bicelles are adequate for such a procedure or how to rationally choose conditions remains unknown. This review intends to discuss issues of protein stabilization and precipitation in the presence of lipids that may influence crystal formation.

Cite this article

Ann C. KIMBLE-HILL . A review of factors affecting the success of membrane protein crystallization using bicelles[J]. Frontiers in Biology, 2013 , 8(3) : 261 -272 . DOI: 10.1007/s11515-012-1208-0

Acknowledgments

This work was supported, in whole or in part, by National Institutes of Health Grants R01-AA018123-S1 and Department of Energy Funding FWP 58701.
1
Afzal S, Tesler W J, Blessing S K, Collins J M, Lis L J (1984). Hydration force between phosphatidylcholine surfaces in aqueous electrolyte solutions. J Colloid Interface Sci, 97(2): 303–307

DOI

2
Angelov B, Ollivon M, Angelova A (1999). X-Ray diffraction study of the effect of the detergent octyl glucoside on the structure of lamellar and nonlamellar lipid/water phases of use for membrane protein reconstitution. Langmuir, 15(23): 8225–8234

DOI

3
Arnold A, Labrot T, Oda R, Dufourc E J (2002). Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy. Biophys J, 83(5): 2667–2680

DOI PMID

4
Bandyopadhyay S, Shelley J C, Klein M L (2001). Molecular dynamics study of the effect of surfactant on a biomembrane. J Phys Chem B, 105(25): 5979–5986

DOI

5
Benz R (1988). Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol, 42(1): 359–393

DOI PMID

6
Bokoch M P, Zou Y, Rasmussen S G F, Liu C W, Nygaard R, Rosenbaum D M (2010). Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature, 463(7277): 108–112 [10.1038/nature08650]

7
Boni L T, Stewart T P, Alderfer J L, Hui S W (1981). Lipid-polyethylene glycol interactions: II. formation of defects in bilayers. J Membr Biol, 62(1–2): 71–77

DOI PMID

8
Boni L T, Stewart T P, Hui S W (1984). Alterations in phospholipid polymorphism by polyethylene glycol. J Membr Biol, 80(1): 91–104

DOI PMID

9
Branden C, Tooze J (1999). Introduction to Protein Structure. New York: Garland Publisher

11
Caffrey M (2003). Membrane protein crystallization. J Struct Biol, 142(1): 108–132

DOI PMID

12
Carion-Taravella B, Lesieur S, Chopineau J, Lesieur P, Ollivon M (2001). Phase behavior of mixed aqueous dispersions of dipalmitoylphosphatidylcholine and dodecyl glycosides: a differential scanning calorimetry and X-ray diffraction investigation. Langmuir, 18(2): 325–335

DOI

13
Carpenter E P, Beis K, Cameron A D, Iwata S (2008). Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol, 18(5): 581–586

DOI PMID

14
Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M (2002). Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J, 83(6): 3393–3407

DOI PMID

15
Cherezov V, Clogston J, Papiz M Z, Caffrey M (2006). Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol, 357(5): 1605–1618

DOI PMID

16
Cho H S, Dominick J L, Spence M M (2010). Lipid domains in bicelles containing unsaturated lipids and cholesterol. J Phys Chem B, 114(28): 9238–9245

DOI PMID

17
Clarke S (1975). The size and detergent binding of membrane proteins. J Biol Chem, 250(14): 5459–5469

PMID

18
Cunningham B A, Shimotake J E, Tamura-Lis W, Mastran T, Kwok W M, Kauffman J W, Lis L J (1986). The influence of ion species on phosphatidylcholine bilayer structure and packing. Chem Phys Lipids, 39(1–2): 135–143

DOI PMID

19
de Planque M R R, Greathouse D V, Koeppe R E 2nd, Schäfer H, Marsh D, Killian J A (1998). Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry, 37(26): 9333–9345

DOI PMID

20
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella S J, Marassi F M, Dufourc E J (2009). Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie, 91(6): 744–751

DOI PMID

21
Dumas F, Sperotto M M, Lebrun M C, Tocanne J F, Mouritsen O G (1997). Molecular sorting of lipids by bacteriorhodopsin in dlpc/dspc lipid bilayers. Biophys J, 73(Oct): 1940–1953

DOI PMID

22
Ericsson C A, Söderman O, Garamus V M, Bergström M, Ulvenlund S (2005). Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 2. n-Tetradecyl-beta-D-maltoside. Langmuir, 21(4): 1507–1515

DOI PMID

23
Ericsson C A, Söderman O, Garamus V M, Bergström M, Ulvenlund S (2004). Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-nonyl-beta-D-glucoside. Langmuir, 20(4): 1401–1408

DOI PMID

24
Faham S (2005). Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci, 14: 836–840 [10.1110/ps.041167605]

25
Faham S, Boulting G L, Massey E A, Yohannan S, Yang D, Bowie J U (2005). Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci, 14(3): 836–840

DOI PMID

26
Faham S, Bowie J U (2002). Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol, 316(1): 1–6

DOI PMID

27
Faham S, Ujwal R, Abramson J, Bowie J U (2009). Chapter 5 Practical Aspects of Membrane Proteins Crystallization in Bicelles. In: LarryD. (Ed.), Current Topics in Membranes (Volume 63, pp. 109–125), Academic Press.

28
Faham S, Yang D, Bare E, Yohannan S, Whitelegge J P, Bowie J U (2004). Side-chain contributions to membrane protein structure and stability. J Mol Biol, 335(1): 297–305

DOI PMID

29
Garavito R M, Picot D (1990). The art of crystallizing membrane proteins. Methods, 1(1): 57–69

DOI

30
Garavito R M, Picot D, Loll P J (1996). Strategies for crystallizing membrane proteins. J Bioenerg Biomembr, 28(1): 13–27

PMID

31
Giordano R, Maisano G, Teixeira J (1997). Sans studies of octyl-β-glucoside and glycine micellar solutions. J Appl Crystallography, 30(2): 761–764

32
Glaubitz C, Grobner G, Watts A (2000). Structural and orientational information of the membrane embedded M13 coat protein by 13c-mas Nmr spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1463(1): 151–161

DOI

33
Harroun T A, Koslowsky M, Nieh M P, de Lannoy C F, Raghunathan V A, Katsaras J (2005). Comprehensive examination of mesophases formed by DMPC and DHPC mixtures. Langmuir, 21(12): 5356–5361

DOI PMID

34
Hauser H, Paltauf F, Shipley G G (1982). Structure and thermotropic behavior of phosphatidylserine bilayer membranes. Biochemistry, 21(5): 1061–1067

DOI PMID

35
Heerklotz H, Seelig J (2000). Titration calorimetry of surfactant–membrane partitioning and membrane solubilization. Biomembranes, 1508(1–2): 69–85

36
Helm C A, Tippmann-Krayer P, Möhwald H, Als-Nielsen J, Kjaer K (1991). Phases of phosphatidyl ethanolamine monolayers studied by synchrotron x-ray scattering. Biophys J, 60(6): 1457–1476

DOI PMID

37
Hite R K, Gonen T, Harrison S C, Walz T (2008). Interactions of lipids with aquaporin-0 and other membrane proteins. Pflugers Arch, 456: 651–661 [10.1007/s00424-007-0353-9]

38
Hite R K, Li Z, Walz T (2010). Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2d crystals. EMBO J, 29(10): 1652–1658 [10.1038/emboj.2010.68]

39
Inoko Y, Yamaguchi T, Furuya K, Mitsui T (1975). Effects of cations on dipalmitoyl phosphatidylcholine/cholesterol/water systems. Biochimica et Biophysica Acta (BBA)–Biomembranes, 413(1): 24–32

DOI

40
Jacobson K, Ishihara A, Inman R (1987). Lateral diffusion of proteins in membranes. Annu Rev Physiol, 49(1): 163–175

DOI PMID

41
Jaehnig F, Vogel H, Best L (1982). Unifying description of the effect of membrane proteins on lipid order. vVerification for the melittin/dimyristoylphosphatidylcholine system. Biochem, 21(26): 6790–6798

DOI

42
Jähnig F (1981). Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys J, 36(2): 329–345

DOI PMID

43
Janiak M J, Small D M, Shipley G G (1976). Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry, 15(21): 4575–4580

DOI PMID

44
Johnson S J, Bayerl T M, Weihan W, Noack H, Penfold J, Thomas R K, Kanellas D, Rennie A R, Sackmann E (1991). Coupling of spectrin and polylysine to phospholipid monolayers studied by specular reflection of neutrons. Biophys J, 60(5): 1017–1025

DOI PMID

45
Kam Z, Shore H B, Feher G (1978). On the crystallization of proteins. J Mol Biol, 123(4): 539–555

DOI PMID

46
Keller M, Kerth A, Blume A (1997). Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biomembranes, 1326(2): 178–192

47
Kilic M S, Bazant M Z, Ajdari A (2007). Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E Stat Nonlin Soft Matter Phys, 75(2): 021502

DOI PMID

48
Killian J A (1998). Hydrophobic mismatch between proteins and lipids in membranes. Biochimica et Biophysica Acta (BBA)–Biomembranes, 1376(3): 401–415

49
Kimble-Hill A C, Singh D, Laible P D, Hanson D K, Porcar L, Butler P, Perez-Salas U (2009). Detergent localization in model proteo-bicelles. Biophys J, 96(3): 453a

DOI

50
Koehorst R B M, Spruijt R B, Vergeldt F J, Hemminga M A (2004). Lipid bilayer topology of the transmembrane alpha-helix of M13 Major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Biophys J, 87(3): 1445–1455

DOI PMID

51
Kuhl T, Guo Y, Alderfer J L, Berman A D, Leckband D, Israelachvili J, Hui S W (1996). Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir, 12(12): 3003–3014

DOI

52
Kühlbrandt W, Auer M, Scarborough G A (1998). Structure of the P-type ATPases. Curr Opin Struct Biol, 8(4): 510–516

DOI PMID

53
Kwan C C, Rosen M (1978). The relationship of structure to properties in surfactants: VII. synthesis and properties of some sodium 1,4-and 2,6-alkoxynaphthalenesulfonates. Journal of the American Oil Chemists' Society, 55(8): 625–628

54
Lambert O, Levy D, Ranck J L, Leblanc G, Rigaud J L (1998). A new “gel-like” phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. Biophys J, 74(2 Pt 1): 918–930

DOI PMID

55
Landau E M, Rosenbusch J P (1996). Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA, 93(25): 14532–14535

DOI PMID

56
Lee A G (2004). How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta, 1666: 62–87 [10.1016/j.bbamem.2004.05.012]

57
Lis L J, Lis W T, Parsegian V A, Rand R P (1981a). Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry, 20(7): 1771–1777

DOI PMID

58
Lis L J, Parsegian V A, Rand R P (1981b). Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry, 20(7): 1761–1770

DOI PMID

59
Liu F, Lewis R N H, Hodges R S, Mcelhaney R N (2002). Effect of variations in the structure of a polyleucine-based α-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Biochem, 41(29): 9197–9207

DOI

60
Lodish H, Berk A, Matsudaira P, Kaiser C, Krieger M, Scott M (2004). Molecular Cell Biology (5th Ed.). New York: Freeman Press

61
Lookman T, Pink D A, Grundke E W, Zuckermann M J, deVerteuil F (1982). Phase separation in lipid bilayers containing integral proteins. Computer simulation studies. Biochemistry, 21(22): 5593–5601

DOI PMID

62
Loosley-Millman M E, Rand R P, Parsegian V A (1982). Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers. Biophys J, 40(3): 221–232

DOI PMID

63
Luecke H, Schobert B, Stagno J, Imasheva E S, Wang J M, Balashov S P, Lanyi J K (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci USA, 105(43): 16561–16565

DOI PMID

64
MacDonald A L, Pink D A (1987). Thermodynamics of glycophorin in phospholipid bilayer membranes. Biochemistry, 26(7): 1909–1917

DOI PMID

65
McLaughlin S (1989). The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem, 18(1): 113–136

DOI PMID

66
Mcpherson A (1991). Useful Principles for the Crystallization of Proteins. Boca Raton: CRC Press

67
Michel H, Oesterhelt D (1980). Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci USA, 77(3): 1283–1285

DOI PMID

68
Mitchell D J, Tiddy G J T, Waring L, Bostock T, Mcdonald M P (1983). Phase behaviour of polyoxyethylene surfactants with water. mesophase structures and partial miscibility (cloud points). Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 79(4): 975–1000

69
Mouritsen O G, Bloom M (1984). Mattress model of lipid-protein interactions in membranes. Biophys J, 46(2): 141–153

DOI PMID

70
Mouritsen O G, Bloom M (1993). Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct, 22: 145–171

71
Needham D, McIntosh T J, Evans E (1988). Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry, 27(13): 4668–4673

DOI PMID

72
Nieh M P, Glinka C J, Krueger S, Prosser R S, Katsaras J (2002). SANS study on the effect of lanthanide ions and charged lipids on the morphology of phospholipid mixtures. Small-angle neutron scattering. Biophys J, 82(5): 2487–2498

DOI PMID

73
Nilsson F, Söderman O, Johansson I (1996). Physical–chemical properties of the N-octyl B-D-glucoside/water system. a phase dDiagram, self-diffusion Nmr, and saxs study. Langmuir, 12(4): 902–908

DOI

74
Nollert P (2004). Lipidic cubic phases as matrices for membrane protein crystallization. Methods, 34(3): 348–353

DOI PMID

75
Owicki J C, Springgate M W, McConnell H M (1978). Theoretical study of protein—lipid interactions in bilayer membranes. Proc Natl Acad Sci USA, 75(4): 1616–1619

DOI PMID

76
Pebay-Peyroula E, Garavito R M, Rosenbusch J P, Zulauf M, Timmins P A (1995). Detergent structure in tetragonal crystals of OmpF porin. Structure, 3(10): 1051–1059

DOI PMID

77
Petrache H I, Tristram-Nagle S, Harries D, Kučerka N, Nagle J F, Parsegian V A (2006). Swelling of phospholipids by monovalent salt. J Lipid Res, 47(2): 302–309

DOI PMID

78
Pink D A, Chapman D (1979). Protein-lipid interactions in bilayer membranes: a lattice model. Proc Natl Acad Sci USA, 76(4): 1542–1546

DOI PMID

79
Pink D A, Green T J, Chapman D (1980). Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry, 19(2): 349–356

DOI PMID

80
Raffard G, Steinbruckner S, Arnold A, Davis J H, Dufourc E J (2000). Temperature–composition diagram of dimyristoylphosphatidylcho-line–dicaproylphosphatidylcholine “bicelles” self-orienting in the magnetic field. a solid state 2h and 31p Nmr study. Langmuir, 16(20): 7655–7662

DOI

81
Rasmussen S G F, Choi H-J, Rosenbaum D M, Kobilka T S, Thian F S, Edwards P C (2007). Crystal structure of the human [Bgr]2 adrenergic g-Protein-coupled receptor. Nature, 450(7168): 383– 387

82
Roth M, Lewit-Bentley A, Michel H, Deisenhofer J, Huber R, Oesterhelt D (1989). Detergent structure in crystals of a bacterial photosynthetic reaction centre. Nature, 340(6235): 659–662

83
Sabra M C, Mouritsen O G (1998). Steady-state compartmentalization of lipid membranes by active proteins. Biophys J, 74(2 Pt 1): 745–752

DOI PMID

84
Santonicola M G L, Lenhoff A M, Kaler E W (2008). Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J, 94(9): 3647–3658

DOI PMID

85
Seelig A, Seelig J (1977). Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry, 16(1): 45–50

DOI PMID

86
Sharpe S, Barber K R, Grant C W M, Goodyear D, Morrow M R (2002). Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains. Biophys J, 83(1): 345–358

DOI PMID

87
Stewart T P, Hui S W, Portis A R Jr, Papahadjopoulos D (1979). Complex Phase Mixing of Phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles. Biochimica et Biophysica Acta (BBA)–Biomembranes, 556(1): 1–16

DOI

88
Strandberg E, Ozdirekcan S, Rijkers D T S, van der Wel P C A, Koeppe R E 2nd, Liskamp R M, Killian J A (2004). Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys J, 86(6): 3709–3721

DOI PMID

89
Sukumaran S, Hauser K, Maier E, Benz R, Mäntele W (2006). Structure-function correlation of outer membrane protein porin from Paracoccus denitrificans. Biopolymers, 82(4): 344–348

DOI PMID

90
Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T (1998). A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol, 283(2): 463–474

DOI PMID

91
Tamm I, Kikuchi T (1979). Early termination of heterogeneous nuclear RNA transcripts in mammalian cells: accentuation by 5,6-dichloro 1-beta-D-ribofuranosylbenzimidazole. Proc Natl Acad Sci USA, 76(11): 5750–5754

DOI PMID

92
Tamura-Lis W, Reber E J, Cunningham B A, Collins J M, Lis L J (1986). Ca2+ induced phase separations in phospholipid mixtures. Chem Phys Lipids, 39(1-2): 119–124

DOI PMID

93
Tatulian S A (1983). Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. Biochimica et Biophysica Acta (BBA)–Biomembranes, 736(2): 189–195

DOI

94
Tessier-Lavigne M, Boothroyd A, Zuckermann M J, Pink D A (1982). Lipid-mediated interactions between intrinsic molecules in bilayer membranes. J Chem Phys, 76(9): 4587–4599

DOI

95
Tilcock C P, Fisher D (1979). Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta, 557(1): 53–61

DOI PMID

96
Träuble H, Eibl H (1974). Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc Natl Acad Sci USA, 71(1): 214–219

DOI PMID

97
Ujwal R, Bowie J U (2011). Crystallizing membrane proteins using lipidic bicelles. Methods, 55(4): 337–341

DOI PMID

98
Ujwal R, Cascio D, Colletier J P, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008). The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA, 105(46): 17742–17747

DOI PMID

99
van Dam L, Karlsson G, Edwards K (2004). Direct Observation and Characterization of Dmpc/Dhpc Aggregates under Conditions Relevant for Biological Solution Nmr. Biochimica et Biophysica Acta (BBA)–Biomembranes, 1664(2): 241–256

DOI

100
van der Wel P C A, Strandberg E, Killian J A, Koeppe R E 2nd (2002). Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. Biophys J, 83(3): 1479–1488

DOI PMID

101
Venturoli M, Smit B, Sperotto M M (2005). Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J, 88(3): 1778–1798

DOI PMID

102
Vinothkumar K R (2011). Structure of rhomboid protease in a lipid environment. J Mol Biol, 407(2): 232–247

DOI PMID

103
Vinson P K, Talmon Y, Walter A (1989). Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J, 56(4): 669–681

DOI PMID

104
Yamazaki M, Ito T (1990). Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry, 29(5): 1309–1314

DOI PMID

105
Zhang Y P, Lewis R N H, McElhaney R N (1997). Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J, 72(2 Pt 1): 779–793

DOI PMID

Outlines

/