REVIEW

Progress in Brucella vaccine development

  • Xinghong YANG ,
  • Jerod A. SKYBERG ,
  • Ling CAO ,
  • Beata CLAPP ,
  • Theresa THORNBURG ,
  • David W. PASCUAL
Expand
  • Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA

Received date: 24 Nov 2011

Accepted date: 16 Jan 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.

Cite this article

Xinghong YANG , Jerod A. SKYBERG , Ling CAO , Beata CLAPP , Theresa THORNBURG , David W. PASCUAL . Progress in Brucella vaccine development[J]. Frontiers in Biology, 0 , 8(1) : 60 -77 . DOI: 10.1007/s11515-012-1196-0

Acknowledgments

This work was supported by grants from National Institutes of Health Grant R21 AI-080960, 1R01 AI-093372, P20 RR020185, USDA-NIFA grant 2010-34397-21391, US Department of Agriculture Formula Funds, and Montana Agricultural Experiment Station.
1
Abu Shaqra Q M (2000). Epidemiological aspects of brucellosis in Jordan. Eur J Epidemiol, 16(6): 581-584

DOI PMID

2
Adone R, Ciuchini F, Marianelli C, Tarantino M, Pistoia C, Marcon G, Petrucci P, Francia M, Riccardi G, Pasquali P (2005). Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infect Immun, 73(7): 4198-4204

DOI PMID

3
Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson J J (2001). Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun, 69(8): 4816-4822

DOI PMID

4
Alcantara R B, Read R D, Valderas M W, Brown T D, Roop R M 2nd (2004). Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun, 72(8): 4911-4917

DOI PMID

5
Almirón M, Martínez M, Sanjuan N, Ugalde R A (2001). Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun, 69(10): 6225-6230

DOI PMID

6
Alton G G (1966). Duration of the immunity produced in goats by the Rev. 1 Brucella melitensis vaccine. J Comp Pathol, 76(3): 241-253

DOI PMID

7
Alton G G (1968). Further studies on the duration of the immunity produced in goats by the Rev. 1 Brucella melitensis vaccine. J Comp Pathol, 78(2): 173-178

DOI PMID

8
Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini A E, Ugalde R, Moreno E, Moriyón I, Gorvel J P (2005). Cyclic β-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol, 6(6): 618-625

DOI PMID

9
Arenas-Gamboa A M, Ficht T A, Davis D S, Elzer P H, Kahl-McDonagh M, Wong-Gonzalez A, Rice-Ficht A C (2009a). Oral vaccination with microencapsuled strain 19 vaccine confers enhanced protection against Brucella abortus strain 2308 challenge in red deer (Cervus elaphus elaphus). J Wildl Dis, 45(4): 1021-1029

PMID

10
Arenas-Gamboa A M, Ficht T A, Davis D S, Elzer P H, Wong-Gonzalez A, Rice-Ficht A C (2009b). Enhanced immune response of red deer (Cervus elaphus) to live rb51 vaccine strain using composite microspheres. J Wildl Dis, 45(1): 165-173

PMID

11
Arenas-Gamboa A M, Ficht T A, Kahl-McDonagh M M, Gomez G, Rice-Ficht A C (2009c). The Brucella abortus S19 DeltavjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle. Infect Immun, 77(2): 877-884

DOI PMID

12
Arenas-Gamboa A M, Ficht T A, Kahl-McDonagh M M, Rice-Ficht A C (2008). Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun, 76(6): 2448-2455

DOI PMID

13
Arenas-Gamboa A M, Rice-Ficht A C, Kahl-McDonagh M M, Ficht T A (2011). Protective efficacy and safety of Brucella melitensis 16MΔmucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun, 79(9): 3653-3658

DOI PMID

14
Ascón M A, Ochoa-Repáraz J, Walters N, Pascual D W (2005). Partially assembled K99 fimbriae are required for protection. Infect Immun, 73(11): 7274-7280

DOI PMID

15
Ashford D A, di Pietra J, Lingappa J, Woods C, Noll H, Neville B, Weyant R, Bragg S L, Spiegel R A, Tappero J, Perkins B A (2004). Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine, 22(25-26): 3435-3439

DOI PMID

16
Atluri V L, Xavier M N, de Jong M F, den Hartigh A B, Tsolis R E (2011). Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol, 65(1): 523-541

DOI PMID

17
Audic S, Lescot M, Claverie J M, Scholz H C (2009). Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics, 10(1): 352

DOI PMID

18
Bäckhed F, Normark S, Schweda E K, Oscarson S, Richter-Dahlfors A (2003). Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect, 5(12): 1057-1063

DOI PMID

19
Baldi, P.C., Wallach, J.C., Ferrero, M.C., Delpino, M.V., and Fossati, C.A. (2008). Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina. CMI, 14: 805-807

20
Baloglu S, Boyle S M, Vemulapalli R, Sriranganathan N, Schurig G G, Toth T E (2005). Immune responses of mice to vaccinia virus recombinants expressing either Listeria monocytogenes partial listeriolysin or Brucella abortus ribosomal L7/L12 protein. Vet Microbiol, 109(1-2): 11-17

DOI PMID

21
Banai M (2002). Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: laboratory aspects and field observations. Vet Microbiol, 90(1-4): 497-519

DOI PMID

22
Bandara A B, Poff-Reichow S A, Nikolich M, Hoover D L, Sriranganathan N, Schurig G G, Dobrean V, Boyle S M (2009). Simultaneous expression of homologous and heterologous antigens in rough, attenuated Brucella melitensis. Microbes Infect, 11(3): 424-428

DOI PMID

23
Barquero-Calvo E, Chaves-Olarte E, Weiss D S, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E (2007). Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE, 2(7): e631

DOI PMID

24
Barrio M B, Grilló M J, Muñoz P M, Jacques I, González D, de Miguel M J, Marín C M, Barberán M, Letesson J J, Gorvel J P, Moriyón I, Blasco J M, Zygmunt M S (2009). Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep. Vaccine, 27(11): 1741-1749

DOI PMID

25
Barrionuevo P, Delpino M V, Velásquez L N, García Samartino C, Coria L M, Ibañez A E, Rodríguez M E, Cassataro J, Giambartolomei G H (2011). Brucella abortus inhibits IFN-γ-induced FcγRI expression and FcγRI-restricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages. Microbes Infect, 13(3): 239-250

DOI PMID

26
Beckett F W, MacDiarmid S C (1985). The effect of reduced-dose Brucella abortus strain 19 vaccination in accredited dairy herds. Br Vet J, 141(5): 507-514

PMID

27
Bercovich Z (2000). The use of skin delayed-type hypersensitivity as an adjunct test to diagnose brucellosis in cattle: a review. Vet Q, 22(3): 123-130

DOI PMID

28
Bhattacharjee A K, Izadjoo M J, Zollinger W D, Nikolich M P, Hoover D L (2006). Comparison of protective efficacy of subcutaneous versus intranasal immunization of mice with a Brucella melitensis lipopolysaccharide subunit vaccine. Infect Immun, 74(10): 5820-5825

DOI PMID

29
Blasco J M, Díaz R (1993). Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet, 342(8874): 805

DOI PMID

30
Blasco J M, Marín C, Jiménez de Bagüés M P, Barberán M (1993). Efficacy of Brucella suis strain 2 vaccine against Brucella ovis in rams. Vaccine, 11(13): 1291-1294

DOI PMID

31
Borts I H, McNUTT S H, Jordan C F (1946). Brucella melitensis isolated from swine tissues in Iowa. J Am Med Assoc, 130(14): 966-966

DOI PMID

32
Boschiroli M L, Cravero S L, Arese A I, Campos E, Rossetti O L (1997). Protection against infection in mice vaccinated with a Brucella abortus mutant. Infect Immun, 65(2): 798-800

PMID

33
Bosseray N (1991). Brucella melitensis Rev. 1 living attenuated vaccine: stability of markers, residual virulence and immunogenicity in mice. Biologicals, 19(4): 355-363

DOI PMID

34
Bosseray N, Plommet M (1990). Brucella suis S2, brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice. Vaccine, 8(5): 462-468

DOI PMID

35
Briones G, Iñón de Iannino N, Roset M, Vigliocco A, Paulo P S, Ugalde R A (2001). Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun, 69(7): 4528-4535

DOI PMID

36
Burkhardt S, Jiménez de Bagüés M P, Liautard J P, Köhler S (2005). Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun, 73(10): 6782-6790

DOI PMID

37
Buyukcangaz E, Sen A (2007). The first isolation of Brucella melitensis from bovine aborted fetus in Turkey. J Biol Environ Sci, 1: 139-142

38
Cabrera A, Sáez D, Céspedes S, Andrews E, Oñate A (2009). Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology, 214(6): 467-474

DOI PMID

39
Caporale V, Bonfini B, Di Giannatale E, Di Provvido A, Forcella S, Giovannini A, Tittarelli M, Scacchia M (2010). Efficacy of Brucella abortus vaccine strain RB51 compared to the reference vaccine Brucella abortus strain 19 in water buffalo. Vet Ital, 46(1): 13-19, 5-11

PMID

40
Cardena A P, Herrera D M, Zamora J L F, Pina F B, Sanchez B M, Ruiz E J G, Williams J J, Alvarez F M, Castro R F (2009). Evaluation of vaccination with Brucella abortus S19 vaccine in cattle naturally infected with brucellosis in productive systems found in the Mexican Tropic. Int J Dairy Sci, 4(4): 142-151

DOI

41
Cassataro J, Estein S M, Pasquevich K A, Velikovsky C A, de la Barrera S, Bowden R, Fossati C A, Giambartolomei G H (2005). Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun, 73(12): 8079-8088

DOI PMID

42
Castaño M J, Solera J (2009). Chronic brucellosis and persistence of Brucella melitensis DNA. J Clin Microbiol, 47(7): 2084-2089

DOI PMID

43
Centers for Disease Control and Prevention (CDC) (1998). Human exposure to Brucella abortus strain RB51—Kansas, 1997. MMWR Morb Mortal Wkly Rep, 47(9): 172-175

PMID

44
Cespedes S, Andrews E, Folch H, Oñate A (2000). Identification and partial characterisation of a new protective antigen of Brucella abortus. J Med Microbiol, 49(2): 165-170

PMID

45
Chacón-Díaz C, Muñoz-Rodríguez M, Barquero-Calvo E, Guzmán-Verri C, Chaves-Olarte E, Grilló M J, Moreno E (2011). The use of green fluorescent protein as a marker for Brucella vaccines. Vaccine, 29(3): 577-582

DOI PMID

46
Chain P S, Comerci D J, Tolmasky M E, Larimer F W, Malfatti S A, Vergez L M, Aguero F, Land M L, Ugalde R A, Garcia E (2005). Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun, 73(12): 8353-8361

DOI PMID

47
Cheville N F, McCullough D R, Paulson L R (1998). Brucellosis in the greater Yellowstone area, Vol National Research Council (U.S.). Board on Agriculture. National Research Council (U.S.). Board on Environmental Studies and Toxicology, Washington, D.C., National Academy Press

48
Cheville N F, Olsen S C, Jensen A E, Stevens M G, Florance A M, Houng H S, Drazek E S, Warren R L, Hadfield T L, Hoover D L (1996a). Bacterial persistence and immunity in goats vaccinated with a purE deletion mutant or the parental 16M strain of Brucella melitensis. Infect Immun, 64(7): 2431-2439

PMID

49
Cheville N F, Olsen S C, Jensen A E, Stevens M G, Palmer M V, Florance A M (1996b). Effects of age at vaccination on efficacy of Brucella abortus strain RB51 to protect cattle against brucellosis. Am J Vet Res, 57(8): 1153-1156

PMID

50
Cheville N F, Stevens M G, Jensen A E, Tatum F M, Halling S M (1993). Immune responses and protection against infection and abortion in cattle experimentally vaccinated with mutant strains of Brucella abortus. Am J Vet Res, 54(10): 1591-1597

PMID

51
Clapp B, Skyberg J A, Yang X, Thornburg T, Walters N, Pascual D W (2011a). Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun, 79(10): 4165-4174

DOI PMID

52
Clapp B, Walters N, Thornburg T, Hoyt T, Yang X, Pascual D W (2011b). DNA vaccination of bison to brucellar antigens elicits elevated antibody and IFN-γ responses. J Wildl Dis, 47(3): 501-510

PMID

53
Cloeckaert A, Debbarh H S, Vizcaíno N, Saman E, Dubray G, Zygmunt M S (1996). Cloning, nucleotide sequence, and expression of the Brucella melitensis bp26 gene coding for a protein immunogenic in infected sheep. FEMS Microbiol Lett, 140(2-3): 139-144

DOI PMID

54
Commander N J, Spencer S A, Wren B W, MacMillan A P (2007). The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine, 25(1): 43-54

DOI PMID

55
Conde-Alvarez R, Grilló M J, Salcedo S P, de Miguel M J, Fugier E, Gorvel J P, Moriyón I, Iriarte M (2006). Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol, 8(8): 1322-1335

DOI PMID

56
Confer A W, Hall S M, Faulkner C B, Espe B H, Deyoe B L, Morton R J, Smith R A (1985). Effects of challenge dose on the clinical and immune responses of cattle vaccinated with reduced doses of Brucella abortus strain 19. Vet Microbiol, 10(6): 561-575

DOI PMID

57
Contreras-Rodriguez A, Ramirez-Zavala B, Contreras A, Schurig G G, Sriranganathan N, Lopez-Merino A (2003). Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis. Infect Immun, 71(9): 5238-5244

DOI PMID

58
Cook, W.E., Williams, E.S., Thorne, E.T., Kreeger, T.J., Stout, G., Bardsley, K., Edwards, H., Schurig, G., Colby, L.A., Enright, F., et al. (2002). Brucella abortus strain RB51 vaccination in elk. I. Efficacy of reduced dosage. J Wildl Dis, 38: 18-26

59
Corbel M J (1997). Brucellosis: an overview. Emerg Infect Dis, 3(2): 213-221

DOI PMID

60
Crasta O R, Folkerts O, Fei Z, Mane S P, Evans C, Martino-Catt S, Bricker B, Yu G, Du L, Sobral B W (2008). Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS ONE, 3(5): e2193

DOI PMID

61
Da Costa Martins R, Irache J M, Blasco J M, Muñoz M P, Marín C M, Jesús Grilló M, Jesús De Miguel M, Barberán M, Gamazo C (2010). Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine, 28(17): 3038-3046

DOI PMID

62
Davis D S, Elzer P H (2002). Brucella vaccines in wildlife. Vet Microbiol, 90(1-4): 533-544

DOI PMID

63
Davis D S, Templeton J W, Ficht T A, Huber J D, Angus R D, Adams L G (1991). Brucella abortus in Bison. II. Evaluation of strain 19 vaccination of pregnant cows. J Wildl Dis, 27(2): 258-264

PMID

64
Delpino M V, Estein S M, Fossati C A, Baldi P C, Cassataro J (2007). Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine, 25(37-38): 6721-6729

DOI PMID

65
den Hartigh A B, Sun Y H, Sondervan D, Heuvelmans N, Reinders M O, Ficht T A, Tsolis R M (2004). Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun, 72(9): 5143-5149

DOI PMID

66
Diju I U (2009). Brucellosis—an under-estimated cause of arthralgia & muscular pains in general population. J Ayub Med Coll Abbottabad, 21(2): 128-131

PMID

67
Diptee M D, Adesiyun A A, Asgarali Z, Campbell M, Adone R (2006). Serologic responses, biosafety and clearance of four dosages of Brucella abortus strain RB51 in 6-10 months old water buffalo (Bubalus bubalis). Vet Immunol Immunopathol, 109(1-2): 43-55

DOI PMID

68
Dornand J, Lafont V, Oliaro J, Terraza A, Castaneda-Roldan E, Liautard J P (2004). Impairment of intramacrophagic Brucella suis multiplication by human natural killer cells through a contact-dependent mechanism. Infect Immun, 72(4): 2303-2311

DOI PMID

69
Dueñas A I, Orduña A, Crespo M S, García-Rodríguez C (2004). Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS. Int Immunol, 16(10): 1467-1475

DOI PMID

70
Dzata G K, Confer A W, Wyckoff J H 3rd (1991). The effects of adjuvants on immune responses in cattle injected with a Brucella abortus soluble antigen. Vet Microbiol, 29(1): 27-48

DOI PMID

71
Ebel E D, Williams M S, Tomlinson S M (2008). Estimating herd prevalence of bovine brucellosis in 46 USA states using slaughter surveillance. Prev Vet Med, 85(3-4): 295-316

DOI PMID

72
Edmonds M D, Cloeckaert A, Elzer P H (2002a). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet Microbiol, 88(3): 205-221

DOI PMID

73
Edmonds M D, Cloeckaert A, Hagius S D, Samartino L E, Fulton W T, Walker J V, Enright F M, Booth N J, Elzer P H (2002b). Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion mutant. Res Vet Sci, 72(3): 235-239

DOI PMID

74
Eker A, Uzunca I, Tansel O, Birtane M (2011). A patient with brucellar cervical spondylodiscitis complicated by epidural abscess. J Clin Neurosci, 18(3): 428-430

DOI PMID

75
el Idrissi A H, Benkirane A, el Maadoudi M, Bouslikhane M, Berrada J, Zerouali A (2001). Comparison of the efficacy of Brucella abortus strain RB51 and Brucella melitensis Rev. 1 live vaccines against experimental infection with Brucella melitensis in pregnant ewes. Rev Sci Tech, 20(3): 741-747

PMID

76
Elberg S S, Faunce K J Jr (1957). Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. J Bacteriol, 73(2): 211-217

PMID

77
Elzer P H, Edmonds M D, Hagius S D, Walker J V, Gilsdorf M J, Davis D S (1998). Safety of Brucella abortus strain RB51 in Bison. J Wildl Dis, 34(4): 825-829

PMID

78
Entessar F, Ardalan A, Ebadi A, Jones L M (1967). Effect of living Rev. 1 vaccine in producing long-term immunity against Brucella melitensis infection in sheep in Iran. J Comp Pathol, 77(4): 367-376

DOI PMID

79
Eschenbrenner M, Horn T A, Wagner M A, Mujer C V, Miller-Scandle T L, DelVecchio V G (2006). Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M. J Proteome Res, 5(7): 1731-1740

DOI PMID

80
Fensterbank R, Pardon P, Marly J (1982). Efficacy of Brucella melitensis Rev. 1 vaccine against Brucella ovis infection in rams. Ann Rech Vet, 13(2): 185-190

PMID

81
Ferguson G P, Datta A, Baumgartner J, Roop R M 2nd, Carlson R W, Walker G C (2004). Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci USA, 101(14): 5012-5017

DOI PMID

82
Ferrero M C, Fossati C A, Baldi P C (2009). Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect, 11(4): 476-483

DOI PMID

83
Fiorentino M A, Campos E, Cravero S, Arese A, Paolicchi F, Campero C, Rossetti O (2008). Protection levels in vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2. Vet Microbiol, 132(3-4): 302-311

DOI PMID

84
Fosgate G T, Adesiyun A A, Hird D W, Johnson W O, Hietala S K, Schurig G G, Ryan J, Diptee M D (2003). Evaluation of brucellosis RB51 vaccine for domestic water buffalo (Bubalus bubalis) in Trinidad. Prev Vet Med, 58(3-4): 211-225

DOI PMID

85
Foulongne V, Walravens K, Bourg G, Boschiroli M L, Godfroid J, Ramuz M, O’Callaghan D (2001). Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun, 69(1): 547-550

DOI PMID

86
Franco M P, Mulder M, Gilman R H, Smits H L (2007). Human brucellosis. Lancet Infect Dis, 7(12): 775-786

DOI PMID

87
Galindo R C, Muñoz P M, de Miguel M J, Marin C M, Labairu J, Revilla M, Blasco J M, Gortazar C, de la Fuente J (2010). Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2. J Genet Genomics, 37(11): 725-736

DOI PMID

88
García-Carrillo C (1980). Comparison of B. melitensis Rev. 1 and B. abortus strain 19 as a vaccine against brucellosis in cattle. Zentralbl Veterinarmed B, 27(2): 131-138

DOI PMID

89
González D, Grilló M J, De Miguel M J, Ali T, Arce-Gorvel V, Delrue R M, Conde-Alvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín C M, Weintraub A, Widmalm G, Zygmunt M, Letesson J J, Gorvel J P, Blasco J M, Moriyón I (2008). Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS ONE, 3(7): e2760

DOI PMID

90
Graves R R (1943). The story of John M. Buck's and Matilda's contribution to the cattle industry. J Am Vet Med Assoc, 102: 193-195

91
Gulsun S, Aslan S, Satici O, Gul T (2011). Brucellosis in pregnancy. Trop Doct, 41(2): 82-84

DOI PMID

92
Haag A F, Myka K K, Arnold M F, Caro-Hernández P, Ferguson G P (2010). Importance of lipopolysaccharide and cyclic β-1,2-glucans in Brucella-mammalian infections. Int J Microbiol, 2010: 1-12

DOI PMID

93
Hall W H (1990). Modern chemotherapy for brucellosis in humans. Rev Infect Dis, 12(6): 1060-1099

DOI PMID

94
Halling S M, Peterson-Burch B D, Bricker B J, Zuerner R L, Qing Z, Li L L, Kapur V, Alt D P, Olsen S C (2005). Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol, 187(8): 2715-2726

DOI PMID

95
Herrera E, Rivera A, Palomares E G, Hernández-Castro R, Díaz-Aparicio E (2011). Isolation of Brucella melitensis from a RB51-vaccinated seronegative goat. Trop Anim Health Prod, 43(6): 1069-1070

DOI PMID

96
Hofer E, Revilla-Fernández S, Al Dahouk S, Riehm J M, Nöckler K, Zygmunt M S, Cloeckaert A, Tomaso H, Scholz H C (2011). A potential novel Brucella species isolated from mandibular lymph nodes of red foxes in Austria. Vet Microbiol, (In press)

PMID

97
Jelastopulu E, Bikas C, Petropoulos C, Leotsinidis M (2008). Incidence of human brucellosis in a rural area in Western Greece after the implementation of a vaccination programme against animal brucellosis. BMC Public Health, 8(1): 241-245

DOI PMID

98
Jiménez de Bagüés M P, Barberán M, Marín C M, Blasco J M (1995). The Brucella abortus RB51 vaccine does not confer protection against Brucella ovis in rams. Vaccine, 13(3): 301-304

DOI PMID

99
Jiménez de Bagués M P, Marín C M, Barberán M, Blasco J M (1989). Responses of ewes to B. melitensis Rev1 vaccine administered by subcutaneous or conjunctival routes at different stages of pregnancy. Ann Rech Vet, 20(2): 205-213

PMID

100
Kaushik P, Singh D K, Kumar S V, Tiwari A K, Shukla G, Dayal S, Chaudhuri P (2010). Protection of mice against Brucella abortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun, 34(2): 119-132

DOI PMID

101
Keller R, Hilton T D, Rios H, Boedeker E C, Kaper J B (2010). Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microb Pathog, 48(1): 1-8

DOI PMID

102
Kim S, Lee D S, Watanabe K, Furuoka H, Suzuki H, Watarai M (2005). Interferon-γ promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol, 5(1): 1-11

DOI PMID

103
Kojouri G A, Gholami M (2009). Post vaccination follow-up of Brucella melitensis in blood stream of sheep by PCR assay. Comp Clin Pathol, 18(4): 439-442

DOI

104
Kolar J (1977). Brucella vaccines production in Mongolia. World Health Organization, Assignment Report on WHO Project MOG BLG 001, SEA/Vaccine/89, 40

105
Kreeger T J, Cook W E, Edwards W H, Elzer P H, Olsen S C (2002). Brucella abortus strain RB51 vaccination in elk. II. Failure of high dosage to prevent abortion. J Wildl Dis, 38(1): 27-31

PMID

106
Kreeger T J, Miller M W, Wild M A, Elzer P H, Olsen S C (2000). Safety and efficacy of Brucella abortus strain RB51 vaccine in captive pregnant elk. J Wildl Dis, 36(3): 477-483

PMID

107
Kurar E, Splitter G A (1997). Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine, 15(17-18): 1851-1857

DOI PMID

108
Lavigne J P, Patey G, Sangari F J, Bourg G, Ramuz M, O’Callaghan D, Michaux-Charachon S (2005). Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun, 73(9): 5524-5529

DOI PMID

109
Levine M M, Ferreccio C, Abrego P, Martin O S, Ortiz E, Cryz S (1999). Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine, 17(Suppl 2): S22-S27

DOI PMID

110
Li Y K (1988). [A study on one strain of Brucella canis isolated from a cow at the first time]. Zhonghua Liu Xing Bing Xue Za Zhi, 9(6): 342-344

PMID

111
Loisel-Meyer S, Jiménez de Bagüés M P, Bassères E, Dornand J, Köhler S, Liautard J P, Jubier-Maurin V (2006). Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun, 74(3): 1973-1976

DOI PMID

112
Lord V R, Schurig G G, Cherwonogrodzky J W, Marcano M J, Melendez G E (1998). Field study of vaccination of cattle with Brucella abortus strains RB51 and 19 under high and low disease prevalence. Am J Vet Res, 59(8): 1016-1020

PMID

113
Manthei C A (1959). Summary of controlled research with strain 19. Proc Annu Meet US Livest Sanit Assoc, 63: 91-97

114
Marín C M, Moreno E, Moriyón I, Díaz R, Blasco J M (1999). Performance of competitive and indirect enzyme-linked immunosorbent assays, gel immunoprecipitation with native hapten polysaccharide, and standard serological tests in diagnosis of sheep brucellosis. Clin Diagn Lab Immunol, 6(2): 269-272

PMID

115
Martínez de Tejada G, Pizarro-Cerdá J, Moreno E, Moriyón I (1995). The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun, 63(8): 3054-3061

PMID

116
Memish Z, Mah M W, Al Mahmoud S, Al Shaalan M, Khan M Y (2000). Brucella bacteraemia: clinical and laboratory observations in 160 patients. J Infect, 40(1): 59-63

DOI PMID

117
Minas A, Minas M, Stournara A, Tselepidis S (2004). The “effects” of Rev-1 vaccination of sheep and goats on human brucellosis in Greece. Prev Vet Med, 64(1): 41-47

DOI PMID

118
Mingle C K, Manthei C A, Jasmin A M (1941). The stability of reduced virulence exhibited by Brucella abortus strain 19. J Am Vet Med Assoc, 99: 203-204

119
Moreno E, Moriyón I (2001). Genus Brucella. In Dworkin (ed.), The procaryotes: an evolving microbiological resource for the microbiological community. Springer, New York, NY

120
Moriyón I, Grilló M J, Monreal D, González D, Marín C, López-Goñi I, Mainar-Jaime R C, Moreno E, Blasco J M (2004). Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res, 35(1): 1-38

DOI PMID

121
Mukherjee F, Jain J, Grilló M J, Blasco J M, Nair M (2005). Evaluation of Brucella abortus S19 vaccine strains by bacteriological tests, molecular analysis of ery loci and virulence in BALB/c mice. Biologicals, 33(3): 153-160

DOI PMID

122
Muñoz P M, de Miguel M J, Grilló M J, Marín C M, Barberán M, Blasco J M (2008). Immunopathological responses and kinetics of Brucella melitensis Rev 1 infection after subcutaneous or conjunctival vaccination in rams. Vaccine, 26(21): 2562-2569

DOI PMID

123
Muñoz-Montesino C, Andrews E, Rivers R, González-Smith A, Moraga-Cid G, Folch H, Céspedes S, Oñate A A (2004). Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun, 72(4): 2081-2087

DOI PMID

124
O’Callaghan D, Maskell D, Liew F Y, Easmon C S, Dougan G (1988). Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun, 56(2): 419-423

PMID

125
Olsen S C (2010). Brucellosis in the United States: role and significance of wildlife reservoirs. Vaccine, 28(Suppl 5): F73-F76

DOI PMID

126
Olsen S C, Boyle S M, Schurig G G, Sriranganathan N N (2009). Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 or RB51 overexpressing superoxide dismutase and glycosyltransferase genes. Clin Vaccine Immunol, 16(4): 535-540

DOI PMID

127
Olsen S C, Fach S J, Palmer M V, Sacco R E, Stoffregen W C, Waters W R (2006). Immune responses of elk to initial and booster vaccinations with Brucella abortus strain RB51 or 19. Clin Vaccine Immunol, 13(10): 1098-1103

DOI PMID

128
Olsen S C, Hennager S G (2010). Immune responses and protection against experimental Brucella suis biovar 1 challenge in nonvaccinated or B. abortus strain RB51-vaccinated cattle. Clin Vaccine Immunol, 17(12): 1891-1895

DOI PMID

129
Olsen S C, Holland S D (2003). Safety of revaccination of pregnant bison with Brucella abortus strain RB51. J Wildl Dis, 39(4): 824-829

PMID

130
Olsen S C, Jensen A E, Stoffregen W C, Palmer M V (2003). Efficacy of calfhood vaccination with Brucella abortus strain RB51 in protecting bison against brucellosis. Res Vet Sci, 74(1): 17-22

DOI PMID

131
Oñate A A, Donoso G, Moraga-Cid G, Folch H, Céspedes S, Andrews E (2005). An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice. Infect Immun, 73(6): 3294-3300

DOI PMID

132
Osorio M, Wu Y, Singh S, Merkel T J, Bhattacharyya S, Blake M S, Kopecko D J (2009). Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect Immun, 77(4): 1475-1482

DOI PMID

133
Palmer M V, Cheville N F, Jensen A E (1996a). Experimental infection of pregnant cattle with the vaccine candidate Brucella abortus strain RB51: pathologic, bacteriologic, and serologic findings. Vet Pathol, 33(6): 682-691

DOI PMID

134
Palmer M V, Olsen S C, Gilsdorf M J, Philo L M, Clarke P R, Cheville N F (1996b). Abortion and placentitis in pregnant bison (Bison bison) induced by the vaccine candidate, Brucella abortus strain RB51. Am J Vet Res, 57(11): 1604-1607

PMID

135
Pappas G, Akritidis N, Bosilkovski M, Tsianos E (2005). Brucellosis. N Engl J Med, 352(22): 2325-2336

DOI PMID

136
Pappas G, Panagopoulou P, Christou L, Akritidis N (2006a). Brucella as a biological weapon. Cell Mol Life Sci, 63(19-20): 2229-2236

DOI PMID

137
Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos E V (2006b). The new global map of human brucellosis. Lancet Infect Dis, 6(2): 91-99

DOI PMID

138
Pasquevich K A, Estein S M, García Samartino C, Zwerdling A, Coria L M, Barrionuevo P, Fossati C A, Giambartolomei G H, Cassataro J (2009). Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect Immun, 77(1): 436-445

DOI PMID

139
Petrovska L, Hewinson R G, Dougan G, Maskell D J, Woodward M J (1999). Brucella melitensis 16M: characterisation of the galE gene and mouse immunisation studies with a galE deficient mutant. Vet Microbiol, 65(1): 21-36

DOI PMID

140
Phillips R W, Elzer P H, Robertson G T, Hagius S D, Walker J V, Fatemi M B, Enright F M, Roop R M 2nd (1997). A Brucella melitensis high-temperature-requirement A (htrA) deletion mutant is attenuated in goats and protects against abortion. Res Vet Sci, 63(2): 165-167

DOI PMID

141
Pishva E, Salehi M (2008). First report of isolation of Brucella melitensis, vaccine strain Rev.1 as a source of cattle infection in Iran. J Sci Islam Repub Iran, 19: 19-23

142
Poester, F.P., Goncalves, V.S., Paixao, T.A., Santos, R.L., Olsen, S.C., Schurig, G.G., and Lage, A.P. (2006). Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine, 24: 5327-5334

143
Pontes D S, Dorella F A, Ribeiro L A, Miyoshi A, Le Loir Y, Gruss A, Oliveira S C, Langella P, Azevedo V (2003). Induction of partial protection in mice after oral administration of Lactococcus lactis producing Brucella abortus L7/L12 antigen. J Drug Target, 11(8-10): 489-493

DOI PMID

144
Pourbagher M A, Pourbagher A, Savas L, Turunc T, Demiroglu Y Z, Erol I, Yalcintas D (2006). Clinical pattern and abdominal sonographic findings in 251 cases of brucellosis in southern Turkey. AJR Am J Roentgenol, 187(2): W191-4

DOI PMID

145
Pugh G W J Jr, Tabatabai L B, Bricker B J, Mayfield J E, Phillips M, Zehr E S, Belzer C A (1990). Immunogenicity of Brucella-extracted and recombinant protein vaccines in CD-1 and BALB/c mice. Am J Vet Res, 51(9): 1413-1420

PMID

146
Radwan A I, Bekairi S I, Mukayel A A, al-Bokmy A M, Prasad P V, Azar F N, Coloyan E R (1995). Control of Brucella melitensis infection in a large camel herd in Saudi Arabia using antibiotherapy and vaccination with Rev. 1 vaccine. Rev Sci Tech, 14(3): 719-732

PMID

147
Rafiei A, Ardestani S K, Kariminia A, Keyhani A, Mohraz M, Amirkhani A (2006). Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease. J Infect, 53(5): 315-324

DOI PMID

148
Rajasekaran P, Surendran N, Seleem M N, Sriranganathan N, Schurig G G, Boyle S M (2011). Over-expression of homologous antigens in a leucine auxotroph of Brucella abortus strain RB51 protects mice against a virulent B. suis challenge. Vaccine, 29(17): 3106-3110

DOI PMID

149
Rajashekara G, Krepps M, Eskra L, Mathison A, Montgomery A, Ishii Y, Splitter G (2005). Unraveling Brucella genomics and pathogenesis in immunocompromised IRF-1-/- mice. Am J Reprod Immunol, 54(6): 358-368

DOI PMID

150
Robertson G T, Elzer P H, Roop R M 2nd (1996). In vitro and in vivo phenotypes resulting from deletion of the high temperature requirement A (htrA) gene from the bovine vaccine strain Brucella abortus S19. Vet Microbiol, 49(3-4): 197-207

DOI PMID

151
Roop R M 2nd, Jeffers G, Bagchi T, Walker J, Enright F M, Schurig G G (1991). Experimental infection of goat fetuses in utero with a stable, rough mutant of Brucella abortus. Res Vet Sci, 51(2): 123-127

DOI PMID

152
Roop R M 2nd, Phillips R W, Hagius S, Walker J V, Booth N J, Fulton W T, Edmonds M D, Elzer P H (2001). Re-examination of the role of the Brucella melitensis HtrA stress response protease in virulence in pregnant goats. Vet Microbiol, 82(1): 91-95

DOI PMID

153
Roth F, Zinsstag J, Orkhon D, Chimed-Ochir G, Hutton G, Cosivi O, Carrin G, Otte J (2003). Human health benefits from livestock vaccination for brucellosis: case study. Bull World Health Organ, 81(12): 867-876

PMID

154
Sangari F J, Agüero J (1994). Identification of Brucella abortus B19 vaccine strain by the detection of DNA polymorphism at the ery locus. Vaccine, 12(5): 435-438

DOI PMID

155
Sangari F J, García-Lobo J M, Agüero J (1994). The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. FEMS Microbiol Lett, 121(3): 337-342

DOI PMID

156
Schlabritz-Loutsevitch N E, Whatmore A M, Quance C R, Koylass M S, Cummins L B, Dick E J Jr, Snider C L, Cappelli D, Ebersole J L, Nathanielsz P W, Hubbard G B (2009). A novel Brucella isolate in association with two cases of stillbirth in non-human primates- first report. J Med Primatol, 38(1): 70-73

DOI PMID

157
Schurig G G, Roop R M 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N (1991). Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol, 28(2): 171-188

DOI PMID

158
SCOFCAH (2011). Portugal: Results of the implementation of the sheep and goat brucellosis eradication programme 2010 Standing Committee on the Food Chain and Animal Health (SCOFCAH), Brusselshttp://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/presentations/0708092011_brucellosis_portugal.pdf

159
Scurlock B M, Edwards W H (2010). Status of brucellosis in free-ranging elk and bison in Wyoming. J Wildl Dis, 46(2): 442-449

PMID

160
Shi D, Song Y, Li Y J (2006). [Progress on lactococcus lactis expressing heterologous antigens as live mucosal vaccines]. Wei Sheng Wu Xue Bao, 46(4): 680-683

PMID

161
Silva T M, Costa E A, Paixão T A, Tsolis R M, Santos R L (2011a). Laboratory animal models for brucellosis research. J Biomed Biotechnol, 2011: 518323

DOI PMID

162
Silva T M, Paixão T A, Costa E A, Xavier M N, Sá J C, Moustacas V S, den Hartigh A B, Carvalho Neta A V, Oliveira S C, Tsolis R, Santos R L (2011b). Putative ATP-binding cassette transporter is essential for Brucella ovis pathogenesis in mice. Infect Immun, 79(4): 1706-1717

DOI PMID

163
Smith L D, Ficht T A (1990). Pathogenesis of Brucella. Crit Rev Microbiol, 17(3): 209-230

DOI PMID

164
Smither S J, Perkins S D, Davies C, Stagg A J, Nelson M, Atkins H S (2009). Development and characterization of mouse models of infection with aerosolized Brucella melitensis and Brucella suis. Clin Vaccine Immunol, 16(5): 779-783

DOI PMID

165
Spink W W, Hall J W 3rd, Finstad J, Mallet E (1962). Immunization with viable Brucella organisms. Results of a safety test in humans. Bull World Health Organ, 26: 409-419

PMID

166
Stabel T J, Mayfield J E, Morfitt D C, Wannemuehler M J (1993). Oral immunization of mice and swine with an attenuated Salmonella choleraesuis [delta cya-12 delta(crp-cdt)19] mutant containing a recombinant plasmid. Infect Immun, 61(2): 610-618

PMID

167
Stabel T J, Mayfield J E, Tabatabai L B, Wannemuehler M J (1990). Oral immunization of mice with attenuated Salmonella typhimurium containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 58(7): 2048-2055

PMID

168
Stabel T J, Mayfield J E, Tabatabai L B, Wannemuehler M J (1991). Swine immunity to an attenuated Salmonella typhimurium mutant containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 59(9): 2941-2947

PMID

169
Stevens M G, Hennager S G, Olsen S C, Cheville N F (1994). Serologic responses in diagnostic tests for brucellosis in cattle vaccinated with Brucella abortus 19 or RB51. J Clin Microbiol, 32(4): 1065-1066

PMID

170
Stevens M G, Olsen S C (1996). Antibody responses to Brucella abortus 2308 in cattle vaccinated with B. abortus RB51. Infect Immun, 64(3): 1030-1034

PMID

171
Stevens M G, Olsen S C, Cheville N F (1995a). Comparative analysis of immune responses in cattle vaccinated with Brucella abortus strain 19 or strain RB51. Vet Immunol Immunopathol, 44(3-4): 223-235

DOI PMID

172
Stevens M G, Olsen S C, Pugh G W Jr, Brees D (1995b). Comparison of immune responses and resistance to brucellosis in mice vaccinated with Brucella abortus 19 or RB51. Infect Immun, 63(1): 264-270

PMID

173
Taylor A W, McDiarmid A (1949). The stability of the avirulent characters of Brucella abortus, strain 19 and strain 45/20 in lactating and pregnant cows. Vet Rec, 61: 317-318

174
Teske S S, Huang Y, Tamrakar S B, Bartrand T A, Weir M H, Haas C N (2011). Animal and human dose-response models for Brucella species. Risk Anal, 31(10): 1576-1596

DOI PMID

175
Thorne E T (1997). Brucellosis, bison, elk, and cattle in the Greater Yellowstone area: defining the problem, exploring solutions. Cheyenne, Wyoming Game and Fish Dept. for Greater Yellowstone Interagency Brucellosis Committee

176
Tibor A, Jacques I, Guilloteau L, Verger J M, Grayon M, Wansard V, Letesson J J (1998). Effect of P39 gene deletion in live Brucella vaccine strains on residual virulence and protective activity in mice. Infect Immun, 66(11): 5561-5564

PMID

177
Trant C G, Lacerda T L, Carvalho N B, Azevedo V, Rosinha G M, Salcedo S P, Gorvel J P, Oliveira S C (2010). The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infect Immun, 78(5): 2283-2291

DOI PMID

178
Treanor J J, Johnson J S, Wallen R L, Cilles S, Crowley P H, Cox J J, Maehr D S, White P J, Plumb G E (2010). Vaccination strategies for managing brucellosis in Yellowstone bison. Vaccine, 28(Suppl 5): F64-F72

DOI PMID

179
Ugalde J E, Comerci D J, Leguizamón M S, Ugalde R A (2003). Evaluation of Brucella abortus phosphoglucomutase (pgm) mutant as a new live rough-phenotype vaccine. Infect Immun, 71(11): 6264-6269

DOI PMID

180
Valderas M W, Barrow W W (2008). Establishment of a method for evaluating intracellular antibiotic efficacy in Brucella abortus-infected Mono Mac 6 monocytes. J Antimicrob Chemother, 61(1): 128-134

DOI PMID

181
Van Campen H, Rhyan J (2010). The role of wildlife in diseases of cattle. Vet Clin North Am Food Anim Pract, 26(1): 147-161

DOI PMID

182
Velikovsky C A, Cassataro J, Giambartolomei G H, Goldbaum F A, Estein S, Bowden R A, Bruno L, Fossati C A, Spitz M (2002). A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun, 70(5): 2507-2511

DOI PMID

183
Vemulapalli R, Contreras A, Sanakkayala N, Sriranganathan N, Boyle S M, Schurig G G (2004). Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice. Vet Microbiol, 102(3-4): 237-245

DOI PMID

184
Verger J M, Grayon M, Zundel E, Lechopier P, Olivier-Bernardin V (1995). Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine, 13(2): 191-196

DOI PMID

185
Walker, G.C., LeVier, K., Phillips, R.W., Grippe, V.K., and Roop, R.M., 2nd. (2000). Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science, 287: 2492-2493

186
Wang Y, Bai Y, Qu Q, Xu J, Chen Y, Zhong Z, Qiu Y, Wang T, Du X, Wang Z, Yu S, Fu S, Yuan J, Zhen Q, Yu Y, Chen Z, Huang L (2011). The 16MΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection. Vet Microbiol, 151(3-4): 354-362

DOI PMID

187
Ward D, Jackson, R., Karomatullo H, Khakimov T, Kurbonov K, Amirbekov M, Stack J, El-Idrissi A, Heuer C (2011). Brucellosis control in Tajikistan using Rev 1 vaccine: change in seroprevalence in small ruminants from 2004 to 2009. Vet Rec

188
Whatmore A M (2009). Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol, 9(6): 1168-1184

DOI PMID

189
Winter A J, Rowe G E, Duncan J R, Eis M J, Widom J, Ganem B, Morein B (1988). Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infect Immun, 56(11): 2808-2817

PMID

190
Wise R I (1980). Brucellosis in the United States. Past, present, and future. JAMA, 244(20): 2318-2322

DOI PMID

191
Wyckoff J H 3rd, Howland J L, Scott C M, Smith R A, Confer A W (2005). Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle. Vet Microbiol, 111(1-2): 77-87

DOI PMID

192
Xavier M N, Paixão T A, Poester F P, Lage A P, Santos R L (2009). Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J Comp Pathol, 140(2-3): 149-157

DOI PMID

193
Xin X (1986). Orally administrable brucellosis vaccine: Brucella suis strain 2 vaccine. Vaccine, 4(4): 212-216

DOI PMID

194
Yang X, Becker T, Walters N, Pascual D W (2006). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun, 74(7): 3874-3879

DOI PMID

195
Yang X, Hinnebusch B J, Trunkle T, Bosio C M, Suo Z, Tighe M, Harmsen A, Becker T, Crist K, Walters N, Avci R, Pascual D W (2007). Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague. J Immunol, 178(2): 1059-1067

PMID

196
Yang X, Hudson M, Walters N, Bargatze R F, Pascual D W (2005). Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun, 73(11): 7297-7303

DOI PMID

197
Yang X, Thornburg T, Walters N, Pascual D W (2010). DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate. Vaccine, 28(4): 1069-1074

DOI PMID

198
Yang Y, Yin J, Guo D, Lang X, Wang X (2011). Immunization of mice with recombinant S-adenosyl-L-homocysteine hydrolase protein confers protection against Brucella melitensis infection. FEMS Immunol Med Microbiol, 61(2): 159-167

DOI PMID

199
Young E J (1989). Clinical manifestations of human brucellosis, p. 97-126. In E. J. Young and M. J. Corbel (ed.), Brucellosis: clinical and laboratory aspects. CRC Press, Inc, Boca Raton, Fla

200
Yu D H, Hu X D, Cai H, Li M (2007). A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses. DNA Cell Biol, 26(6): 435-443

DOI PMID

201
Zhan Y, Cheers C (1993). Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect Immun, 61(11): 4899-4901

PMID

202
Zhao Z, Li M, Luo D, Xing L, Wu S, Duan Y, Yang P, Wang X (2009). Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella. Vaccine, 27(38): 5214-5219

DOI PMID

203
Zinsstag J, Roth F, Orkhon D, Chimed-Ochir G, Nansalmaa M, Kolar J, Vounatsou P (2005). A model of animal-human brucellosis transmission in Mongolia. Prev Vet Med, 69(1-2): 77-95

DOI PMID

204
Zowghi E, Ebadi A (1985). Naturally occurring Brucella melitensis infection in cattle in Iran. Rev Sci Tech Off Int Epiz, 4: 811-814

Outlines

/