REVIEW

Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change

  • László ORLÓCI
Expand
  • Ecologia Quantitativa, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil

Received date: 05 Aug 2008

Accepted date: 05 Sep 2008

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The model at the basis of trajectory analysis is conceptually simple. When applied to time series vegetation data, the projectile becomes a surrogate for vegetation state, the trajectory for the evolving vegetation process, and the properties of the trajectory for the true process characteristics. Notwithstanding its simplicity, the model is well-defined under natural circumstances and easily adapted to serial vegetation data, irrespective of source. As a major advantage, compared to other models that isolate the elementary processes and probe vegetation dynamics for informative regularities on the elementary level, the trajectory model allows us to probe for regularities on the level of the highest process integrity. Theories and a data analytical methodology developed around the trajectory model are outlined, including many numerical examples. A rich list of key references and volumes of supplementary information supplied in the Web Only Appendices rounds out the presentation.

Cite this article

László ORLÓCI . Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change[J]. Frontiers in Biology, 0 , 4(2) : 158 -179 . DOI: 10.1007/s11515-009-0012-y

Acknowledgements

The paper’s contents evolved at activities in four sites: the Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biology, Laurentian University, Sudbury, Canada; Department of Botany, The University of Hawaii at Manoa, Honolulu; and the Department of Biology, The University of Western Ontario, London, Ontario. I express gratitude to Professors Valério De Patta Pillar, Madhur Anand, Dieter Mueller-Dombois, and Guillermo Goldstine for facilities and facilitation. My deepest expressions of gratitude are due to Forest Eng. Márta Mihály for advice and sustained, unfailing support. Some tables and figures were adopted from earlier versions published in Community Ecology with permission.
1
Anand M (1994). Pattern, process and mechanism-The fundamentals of scientific inquiry applied to vegetation science. Coenoses, 9: 81-92

2
Anand M (2000). The fundamentals of vegetation change: complexity rules. Acta Biotheoretica, 48:1-14

3
Anand M, Orlóci L (1996). Complexity in plant communities: the notion and quantification. Journal of Theoretical Biology, 179: 179-186

4
Anand M, Orlóci L (1997). Chaotic dynamics in a multispecies community. Environmental and Ecological Statistics, 4: 337-344

5
Anand M, Orlóci L (2000). On partitioning of an ecological complexity function. Ecological Modelling, 132: 51-62

6
Anderson P M (1988). Late Quaternary pollen records from the Kobuk and Noatak River drainages, northwestern Alaska. Quaternary Research, 29: 263-276

7
Anderson R S (1993). A 35,000 year vegetation and climate history from Potato Lake, Mogollon Rim, Arizona. Quaternary Research, 40: 351-359

8
Bartha S, Czárán T, Scheuring I (1998). Spatio-Temporal scales of non-equilibrium community dynamics in abstract coenostate spaces. Abstracta Botanica, 22: 49-66

9
Behling H, De Patta Pillar V, Orlóci L, Bauermann S G (2004). Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Paleogeography, Paleoclimatology, Paleoecology, 203: 277-297

10
Bonnefille R, Riollet G, Buchet G, Icole M, Lafont R, Arnold M, Jolly D (1995). Glacial/Interglacial record from intertropical Africa, high resolution pollen and carbon data at Rusaka, Burundi. Quaternary Science Reviews, 14: 917-936

11
Braun E L (1950). Deciduous Forests of Eastern North America. Toronto: Blakston

12
Cajander A K (1909). Über Waldtypen. Helsinki: Acta Forestalia Fennica 1

13
Çambel A B (1993). Applied Chaos Theory: a Paradigm for Complexity. New York: Academic Press

14
Clements F E (1916). Plant Succession: an Analysis of the Development of Vegetation. <patent>Publ. No. 242</patent>. Washington: Carnegie Institution

15
Colinvaux P A, de Oliveira P E, Moreno J E, Miller M C, Bush M B (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274: 85-88

16
Cox D R, Lewis P A W (1968). The Statistical Analysis of Series of Events. London: Methuen

17
Cwynar L C (1982). A Late-Quaternary vegetation history from Hanging Lake, northern Yukon. Ecological Monographs, 52: 1-24

18
Czárán T (1998). Spatiotemporal Models of Population and Community Dynamics. Population and Community Biology Series. <patent>Vol. 21</patent>. London: Chapman and Hall

19
Delcourt P A, Delcourt H R (1987). Long-term Forest Dynamics of the Temperate Zone. New York: Springer-Verlag

20
Diggle P J (1981). Statistical Aalysis of Point Patterns. London: Academic Press

21
Edgington E S (1987). Randomization Tests. <patent>2nd ed</patent>. New York: Marcel Dekker

22
Espenshade E B Jr, Morrison J L, eds. (1990). Good’s World Atlas.18th ed. New York: Rand McNally, 16

23
Fekete G (1985). Terrestrial vegetation succession: theories, models, reality. In: Fekete G, ed. Basic questions of Coenological Succession. Budapest: Akademiai Kiadó, 31-63 (In Magyar)

24
Fekete G, Virágh K, Aszalós R, Orlóci L (1998). Landscape and ecological differentiation of Brachypodium pinnatum grasslands in Hungary. Coenoses, 13: 39-53

25
Feoli E, Orlóci L (1985). Species dispersion profiles of anthropogenic grasslands in the Italian Pre-Alps. Vegetatio, 60: 113-118

26
Gleick J (1987). Chaos: Making a New Science. New York: Penguin Books

27
Goodall D W (1967). Computer simulation of changes in vegetation subject to grazing. Journal of Indian Botanical Society, 46: 56-61

28
Goodall D W (1972). Building and testing ecosystem models. In: Jeffers N R, ed. Mathematical Models in Ecology. Oxford: Blackwell, 173-214

29
Greig-Smith P (1952). The use of random and contiguous quadrats in the study of the structure of plant communities. Annals of Botany, 16: 293-316

30
Greig-Smith P (1957). Quantitative Plant Ecology. London: Butterworths

31
Greig-Smith P (1983). Quantitative Plant Ecology. <patent>3rd ed</patent>. London: Blackwell Scientific

32
Hammerssley J M, Handscom D C (1967). Monte Carlo Methods. London: Methuen

33
He X S, Orlóci L (1999). Anderson Pond revisited: the late Quaternary vegetation process. Abstracta Botanica, 22: 81-93

34
Hill M O, Gauch H G (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42: 47-58

35
Jacobs B F (1985). A middle Wisconsin pollen record from Hay Lake, Arizona. Quaternary Research, 24: 121-130

36
Kerner von Marilaun A (1863). Das Pflanzenleben der Danauländer. Wagner: Innbruck

37
Kershaw A P (1994). Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, and Palaeoecology, 109: 399-412

38
Krajina V J (1963). Biogeoclimatic zones on the Hawaiian Islands. Newsletter of the Hawaiian Botanical Society, 7: 93-98

39
Kühler A W (1990). Natural vegetation. In: Espenshade E B Jr, Morrison J L, eds. Good’s World Atlas, 18th ed. New York: Rand McNally, 8-9

40
Legendre P, Legendre L (1983). Numerical Ecology. Amsterdam: Elsevier

41
Lippe E, De Smidt J T, Glen-Lewin D C (1985). Markov models and succession: a test from a heathland in the Netherlands. Journal of Ecology, 73: 775-791

42
Lorenz E N (1963). Deterministic nonperiodic flow. Journal of Atmospheric Science, 20: 130-141

43
Lotka A J (1925). Elements of Physical Biology. Baltimore: Williams and Wilkins

44
Lozhkin A V, Anderson P M, Eisner W R, Ravako L G, Hopkins D M, Brubaker L B, Colinvaux P A, Miller M C (1993). Late Quaternary lacustrine pollen records from southwestern Beringia. Quaternary Research, 39: 314-324

45
Manabe S, Bryan K, Spelman M J (1990). Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. Journal of Physical Oceanography, 20: 722-749

46
Mandelbrot B B (1967). How long is the coast line of Britain? Statistical self similarity and fractional dimension. Science, 156: 636-638

47
Mandelbrot B B (1977). Fractals: form, chance and dimension. San Francisco: Freeman

48
Mandelbrot B B (1983). The fractal geometry of Nature. San Francisco: Freeman

49
Margalef R (1989). On diversity and connectivity as historical expressions of ecosystems. Coenoses, 4: 121-126

50
Mason J (1990). The greenhouse effect and global warming. Information Office, British Coal, C.R.E. Stoke Orchard, Cheltenham, Gloucestershire, U.K. <patent>GL52 4RZ</patent>

51
May R M (1976). Simple mathematical models with very complicated dynamics. Nature, 261: 459-467

52
May R M (1987). Chaos and the dynamics of biological populations. London: Proc. Royal Soc., Series A, 413: 27-44

53
May R M, ed. (1981). Theoretical Ecology. Oxford: Blackwell

54
May R M, Oster G F (1976). Bifurcations and dynamic complexity in simple ecological model. The American Naturalist, 110: 573-599

55
McIntosh R P (1985). The Background of Ecology: Concept and Theory. New York: Cambridge University Press

56
Metropolis N (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue, 125–130. available at URL: http://library.lanl.gov/cgi-bin/getfile?00326866.pdf

57
Metropolis N, Ulam S (1949). The Monte Carlo method. Journal of the American Statistical Association, 44: 335-341

58
Mueller-Dombois D (1992). A natural dieback theory, cohort senescence, as an alternative to the decline disease theory. In: Manion P D, Lachance D, eds. Forest Decline Concepts. St. Paul, MN: The Am Phytopath Soc Press, 26-37

59
Orlóci L (1974). On information flow in ordination. Vegetatio, 29: 11-16

60
Orlóci L (1978). Multivariate Analysis in Vegetation Research. The Hague: W. Junk bv

61
Orlóci L (1991a). On character-based community analysis: choice, arrangement, comparison. Coenoses, 6: 103-107

62
Orlóci L (1991b). Entropy and Information. Ecological Computations Series (ECS)<patent>Vol. 3</patent>. The Hague: SPB Academic Publishing bv

63
Orlóci L (1991c). CONAPACK: A program for Canonical Analysis of Classification Tables. Ecological Computations Series: <patent>Vol. 4</patent>. The Hague: SPB Academic Publishing

64
Orlóci L (1993). The complexities and scenarios of ecosystem analysis. In: Patil G P, Rao C R, eds. Multivariate Environmental Statistics. New York: Elsevier Scientific, 423-432

65
Orlóci L (1994). Global warming: the process and its anticipated phytoclimatic effects in temperate and cold zone. Coenoses, 9: 69-74

66
Orlóci L (2001a). Pattern dynamics: an essay concerning principles, techniques, and applications. Community Ecology, 2: 1-15

67
Orlóci L (2001b). Prospects and expectations: reflections on a science in change. Community Ecology, 2: 187-196

68
Orlóci L (2006). Diversity partitions in 3-way sorting: functions, Venn diagram mappings, typical additive series, and examples. Community Ecology, 7: 253-259

69
Orlóci L (2008). Vegetation displacement issues and transition statistics in climate warming cycle. Community Ecology, 9: 83-98

70
Orlóci L, Anand M, He X S (1993). Markov chain: a realistic model for temporal coenosere? Biométrie-Praximétrie, 33: 7-26

71
Orlóci L, Anand M, Pillar V D (2002b). Biodiversity analysis: issues, concepts, techniques. Community Ecology, 3: 217-236

72
Orlóci L, Orlóci M (1988). On recovery, Markov chains and canonical analysis. Ecology, 69: 1260-1265

73
Orlóci L, Pillar V D, Anand M (2006). Multiscale analysis of palynological records: new possibilities. Community Ecology, 7: 53-68

74
Orlóci L, Pillar V D, Anand M, Behling H (2002a). Some interesting characteristics of the vegetation process. Community Ecology, 3: 125-146

75
Petit J R, Jouzel D, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V, Lorius C, Pepin L, Ritz C, Saltzmann E, Stievenard M (2001). Vostok Ice Core Data for 420,000 years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series<patent>2001-076</patent>. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA

76
Pielou E C (1977). An Introduction to Mathematical Ecology. New York: Wiley-Interscience

77
Pillar V D, Orlóci L (1996). On randomisation testing in vegetation science: multifactor comparison of relevé groups. Journal of Vegetation Science, 7: 587-592

78
Podani J (1994). Multivariate Analysis in Ecology and Systematics. The Hague: SPB Publishing

79
Rényi A (1961). On measures of entropy and information. In: Neyman J, ed. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 547-561

80
Reyner J N (1971). An Introduction to Spectral Analysis. London: Pion Limited

81
Ripley B D (1981). Spatial Statistics. New York: Wiley & Sons

82
Schroeder M (1991). Fractals, Chaos, Power laws. New York: Freeman

83
Schweingruber F H (1996). Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forests Snow and Landscape Research, Bern: Birmensdorf and Paul Haupt

84
Shugart H H, ed. (1977). Time Series and Ecological Processes. Philadelphia: SIAM

85
Singh G, Geissler E A (1985). Late Cainozoic history of vegetation, fire, lake levels and climate at Lake George, New South Wales, Australia. Philosophical Transactions of the Royal Society of London Series B, 311: 379-447

86
Sukachev V N (1913). Introduction to the Study of Plant Communities. Bibl. St. Petersburg: Natur (In Russian)

87
Trewartha G T (1990). Climatic regions. In: Espenchade E B Jr, Morrison J Leds. Rand McNally Good’s World Atlas. 18th ed. New York: Rand McNally, 8-9

88
Trewartha G T (2001). Global Mechanism of UNCCD, Via del Serafico 107, 00142 Rome, Italy. Web address: www.gm-unccd.org/English/ Field/aridity.htm

89
Usher M B (1981). Modelling ecological succession with particular reference to Markovian models. Vegetation, 46: 11-18

90
Usher M B (1992). Statistical models of succession. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 215-248

91
van Hulst R (1992). From population dynamics to community dynamics: modelling succession as a species replacement process. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 188-214

92
van Hulst R (2000). Vegetation dynamics and plant constraints: separating generalities and specific. Community Ecology, 1: 5-12

93
Volterra V (1926). ‘Variazioni e fluttuazioni del numero d’individui in specie d’animali conviventi’, Mem. Acad. <patent>Lincei, Vol. 2, No. VI. 31-113</patent>. Reprinted: 409-448 in Chapman, R.N. 1931. Animal Ecology. McGraw-Hill, NY

94
von Post L (1946). The prospect for pollen analysis in the study of the earth climatic history. New Phytologist, 45: 193-217

95
Walter H, Harnickell E, Mueller-Dombois D (1975). Climate Diagram Maps. New York: Springer-Verlag

96
Watts W A, Bradbury J P (1982). Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quaternary Research, 17: 56-70

97
Watts W A, Hansen B C S, Grimm E C (1992). Camel Lake: A 40,000-yr record of vegetational and forest history from northwest Florida. Ecology, 73: 1056-1066

98
Wilkins G R, Delcourt P A, Delcourt H R, Harrison F W, Turner M R (1991). Paleoecology of central Kentucky since the last glacial maximum. Quaternary Research, 36: 224-239

Outlines

/