REVIEW

Centrosome positioning and primary cilia assembly orchestrate neuronal development

  • Sneha RAO 1,2 ,
  • Shaoyu GE 2 ,
  • Maya SHELLY , 2
Expand
  • 1. Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
  • 2. Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA

Received date: 22 Apr 2012

Accepted date: 26 Jun 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.

Cite this article

Sneha RAO , Shaoyu GE , Maya SHELLY . Centrosome positioning and primary cilia assembly orchestrate neuronal development[J]. Frontiers in Biology, 2012 , 7(5) : 412 -427 . DOI: 10.1007/s11515-012-1231-1

1
Angers S, Moon R T (2009). Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10(7): 468–477

PMID

2
Ansley S J, Badano J L, Blacque O E, Hill J, Hoskins B E, Leitch C C, Kim J C, Ross A J, Eichers E R, Teslovich T M, Mah A K, Johnsen R C, Cavender J C, Lewis R A, Leroux M R, Beales P L, Katsanis N (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature, 425(6958): 628–633

DOI PMID

3
Arellano J I, Guadiana S M, Breunig J J, Rakic P, Sarkisian M R (2012). Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol, 520(4): 848–873

DOI PMID

4
Arimura N, Kaibuchi K (2007). Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci, 8(3): 194–205

DOI PMID

5
Asada N, Sanada K (2010). LKB1-mediated spatial control of GSK3beta and adenomatous polyposis coli contributes to centrosomal forward movement and neuronal migration in the developing neocortex. J Neurosci, 30(26): 8852–8865

DOI PMID

6
Asada N, Sanada K (2007). LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. The Journal of neuroscience, 27(43): 11769–11775

7
Baas A F, Boudeau J, Sapkota G P, Smit L, Medema R, Morrice N A, Alessi D R, Clevers H C (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J, 22(12): 3062–3072

DOI PMID

8
Baas P W, Yu W Q (1996). A composite model for establishing the microtubule arrays of the neuron. Mol Neurobiol, 12(2): 145–161

DOI PMID

9
Badano J L, Katsanis N (2006). Life without centrioles: cilia in the spotlight. Cell, 125(7): 1228–1230

DOI PMID

10
Bai J, Ramos R L, Ackman J B, Thomas A M, Lee R V, LoTurco J J (2003). RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci, 6(12): 1277–1283

DOI PMID

11
Baker K, Northam G B, Chong W K, Banks T, Beales P, Baldeweg T (2011). Neocortical and hippocampal volume loss in a human ciliopathy: A quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet A, 155A(1): 1–8

DOI PMID

12
Barnes A P, Lilley B N, Pan Y A, Plummer L J, Powell A W, Raines A N, Sanes J R, Polleux F (2007). LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell, 129(3): 549–563

DOI PMID

13
Barnes A P, Polleux F (2009). Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci, 32(1): 347–381

DOI PMID

14
Basto R, Lau J, Vinogradova T, Gardiol A, Woods C G, Khodjakov A, Raff J W (2006). Flies without centrioles. Cell, 125(7): 1375–1386

DOI PMID

15
Bielas S, Higginbotham H, Koizumi H, Tanaka T, Gleeson J G (2004). Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu Rev Cell Dev Biol, 20(1): 593–618

DOI PMID

16
Bielas S L, Serneo F F, Chechlacz M, Deerinck T J, Perkins G A, Allen P B, Ellisman M H, Gleeson J G (2007). Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell, 129(3): 579–591

DOI PMID

17
Biernat J, Gustke N, Drewes G, Mandelkow E M, Mandelkow E (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 11(1): 153–163

DOI PMID

18
Bishop G A, Berbari N F, Lewis J, Mykytyn K (2007). Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol, 505(5): 562–571

DOI PMID

19
Blacque O E, Reardon M J, Li C, McCarthy J, Mahjoub M R, Ansley S J, Badano J L, Mah A K, Beales P L, Davidson W S, Johnsen R C, Audeh M, Plasterk R H, Baillie D L, Katsanis N, Quarmby L M, Wicks S R, Leroux M R (2004). Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev, 18(13): 1630–1642

DOI PMID

20
Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, G�del M, M�ller K, Herbst M, Hornung M, Doerken M, K�ttgen M, Nitschke R, Igarashi P, Walz G, Kuehn E W (2010). Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol, 12(11): 1115–1122

DOI PMID

21
Boudeau J, Baas A F, Deak M, Morrice N A, Kieloch A, Schutkowski M, Prescott A R, Clevers H C, Alessi D R (2003). MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J, 22(19): 5102–5114

DOI PMID

22
Bradshaw N J, Christie S, Soares D C, Carlyle B C, Porteous D J, Millar J K (2009). NDE1 and NDEL1: multimerisation, alternate splicing and DISC1 interaction. Neurosci Lett, 449(3): 228–233

DOI PMID

23
Bradshaw N J, Soares D C, Carlyle B C, Ogawa F, Davidson-Smith H, Christie S, Mackie S, Thomson P A, Porteous D J, Millar J K (2011). PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1. J Neurosci, 31(24): 9043–9054

DOI PMID

24
Brandon N J, Handford E J, Schurov I, Rain J C, Pelling M, Duran-Jimeniz B, Camargo L M, Oliver K R, Beher D, Shearman M S, Whiting P J (2004). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci, 25(1): 42–55

DOI PMID

25
Breunig J J, Sarkisian M R, Arellano J I, Morozov Y M, Ayoub A E, Sojitra S, Wang B, Flavell R A, Rakic P, Town T (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA, 105(35): 13127–13132

DOI PMID

26
Burdick K E, Kamiya A, Hodgkinson C A, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra A K (2008). Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet, 17(16): 2462–2473

DOI PMID

27
Camargo L M, Collura V, Rain J C, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert T P, Whiting P J, Brandon N J (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry, 12(1): 74–86

DOI PMID

28
Chen G, Sima J, Jin M, Wang K Y, Xue X J, Zheng W, Ding Y Q, Yuan X B (2008). Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci, 11(1): 36–44

DOI PMID

29
Chen Y M, Wang Q J, Hu H S, Yu P C, Zhu J, Drewes G, Piwnica-Worms H, Luo Z G (2006). Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA, 103(22): 8534–8539

DOI PMID

30
Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413

DOI PMID

31
Chilov D, Sinjushina N, Rita H, Taketo M M, Mäkelä T P, Partanen J (2011). Phosphorylated β-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol, 357(1): 259–268

DOI PMID

32
Chizhikov V V, Davenport J, Zhang Q, Shih E K, Cabello O A, Fuchs J L, Yoder B K, Millen K J (2007). Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci, 27(36): 9780–9789

DOI PMID

33
Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021

DOI PMID

34
Corbit K C, Shyer A E, Doedle W E, Gaulden J, Singla V, Reiter J F (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms (vol 10, pg 70, 2008). Nat Cell Biol, 10(4): 497–497

35
Dammermann A, Pemble H, Mitchell B J, McLeod I, Yates J R 3rd, Kintner C, Desai A B, Oegema K (2009). The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev, 23(17): 2046–2059

DOI PMID

36
de Anda F C, Meletis K, Ge X, Rei D, Tsai L H (2010). Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci, 30(31): 10391–10406

DOI PMID

37
de Anda F C, Pollarolo G, Da Silva J S, Camoletto P G, Feiguin F, Dotti C G (2005). Centrosome localization determines neuronal polarity. Nature, 436(7051): 704–708

DOI PMID

38
Dickson B J, Gilestro G F (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol, 22(1): 651–675

DOI PMID

39
Distel M, Hocking J C, Volkmann K, K�ster R W (2010). The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol, 191(4): 875–890

DOI PMID

40
Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146–1158

DOI PMID

41
Einstein E B, Patterson C A, Hon B J, Regan K A, Reddi J, Melnikoff D E, Mateer M J, Schulz S, Johnson B N, Tallent M K (2010). Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci, 30(12): 4306–4314

DOI PMID

42
Ekker S C, Ungar A R, Greenstein P, von Kessler D P, Porter J A, Moon R T, Beachy P A (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol, 5(8): 944–955

DOI PMID

43
Etienne-Manneville S, Hall A (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell, 106(4): 489–498

DOI PMID

44
Etienne-Manneville S, Hall A (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421(6924): 753–756

DOI PMID

45
Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157–14162

DOI PMID

46
Feng Y, Olson E C, Stukenberg P T, Flanagan L A, Kirschner M W, Walsh C A (2000). LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron, 28(3): 665–679

DOI PMID

47
Feng Y Y, Walsh C A (2004). Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron, 44(2): 279–293

DOI PMID

48
Fliegauf M, Benzing T, Omran H (2007). When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol, 8(11): 880–893

DOI PMID

49
Fukuda T, Sugita S, Inatome R, Yanagi S (2010). CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J Biol Chem, 285(52): 40554–40561

DOI PMID

50
Gao W Q, Hatten M E (1993). Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science, 260(5106): 367–369

DOI PMID

51
Gardiner S L, Rieger R M (1980). Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res, 213(2): 247–252

DOI PMID

52
G�rtner A, Fornasiero E F, Munck S, Vennekens K, Seuntjens E, Huttner W B, Valtorta F, Dotti C G (2012). N-cadherin specifies first asymmetry in developing neurons. EMBO J, 31(8): 1893–1903

DOI PMID

53
Gon�alves J, Nolasco S, Nascimento R, Lopez Fanarraga M, Zabala J C, Soares H (2010). TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep, 11(3): 194–200

DOI PMID

54
Goodrich L V, Scott M P (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6): 1243–1257

DOI PMID

55
Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, Malik N, Huttner W, Westphal H (2009). Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol, 325(1): 24–32

DOI PMID

56
Gupta S K, Meiri K F, Mahfooz K, Bharti U, Mani S (2010). Coordination between extrinsic extracellular matrix cues and intrinsic responses to orient the centrosome in polarizing cerebellar granule neurons. J Neurosci, 30(7): 2755–2766

DOI PMID

57
Han Y G, Spassky N, Romaguera-Ros M, Garcia-Verdugo J M, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci, 11(3): 277–284

DOI PMID

58
H�ndel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, H�llt V (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 89(3): 909–926

DOI PMID

59
Hatanaka Y, Murakami F (2002). In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells. J Comp Neurol, 454(1): 1–14

DOI PMID

60
Hatten M E (2005). LIS-less neurons don’t even make it to the starting gate. J Cell Biol, 170(6): 867–871

DOI PMID

61
Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53

DOI PMID

62
Higginbotham H, Tanaka T, Brinkman B C, Gleeson J G (2006). GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci, 32(1-2): 118–132

DOI PMID

63
Higginbotham H R, Gleeson J G (2007). The centrosome in neuronal development. Trends Neurosci, 30(6): 276–283

DOI PMID

64
Hinds J W, Hinds P L (1978). Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J Comp Neurol, 179(2): 277–300

DOI PMID

65
Ho K S, Scott M P (2002). Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol, 12(1): 57–63

DOI PMID

66
Hu H Y (1999). Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron, 23(4): 703–711

DOI PMID

67
Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson K V (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962): 83–87

DOI PMID

68
Iba�ez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen U P, North A, Heintz N, Omran H (2004). Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet, 13(18): 2133–2141

DOI PMID

69
Inagaki N, Chihara K, Arimura N, M�nager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001). CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci, 4(8): 781–782

DOI PMID

70
Ishikawa H, Marshall W F (2011). Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol, 12(4): 222–234

DOI PMID

71
Ishizuka K, Kamiya A, Oh E C, Kanki H, Seshadri S, Robinson J F, Murdoch H, Dunlop A J, Kubo K, Furukori K, Huang B, Zeledon M, Hayashi-Takagi A, Okano H, Nakajima K, Houslay M D, Katsanis N, Sawa A (2011). DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature, 473(7345): 92–96

DOI PMID

72
Jacob L S, Wu X, Dodge M E, Fan C W, Kulak O, Chen B, Tang W, Wang B, Amatruda J F, Lum L (2011). Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci Signal, 4(157): ra4

DOI PMID

73
Jiang H, Guo W, Liang X, Rao Y (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell, 120(1): 123–135

DOI PMID

74
Jin H, White S R, Shida T, Schulz S, Aguiar M, Gygi S P, Bazan J F, Nachury M V (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell, 141(7): 1208–1219

DOI PMID

75
Juric-Sekhar G, Adkins J, Doherty D, Hevner R F (2012). Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol, 123(5): 695–709

DOI PMID

76
Kamiya A, Kubo K i, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross C A, Hatten M E, Nakajima K, Sawa A (2005). A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol, 7(12): 1167–1178

DOI PMID

77
Kamiya A, Tan P L, Kubo K, Engelhard C, Ishizuka K, Kubo A, Tsukita S, Pulver A E, Nakajima K, Cascella N G, Katsanis N, Sawa A (2008). Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Arch Gen Psychiatry, 65(9): 996–1006

DOI PMID

78
Killeen M T, Sybingco S S (2008). Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Dev Biol, 323(2): 143–151

DOI PMID

79
Kim J C, Badano J L, Sibold S, Esmail M A, Hill J, Hoskins B E, Leitch C C, Venner K, Ansley S J, Ross A J, Leroux M R, Katsanis N, Beales P L (2004). The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet, 36(5): 462–470

DOI PMID

80
Kishi M, Pan Y A, Crump J G, Sanes J R (2005). Mammalian SAD kinases are required for neuronal polarization. Science, 307(5711): 929–932

DOI PMID

81
Koizumi H, Tanaka T, Gleeson J G (2006). Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron, 49(1): 55–66

DOI PMID

82
Komuro H, Yacubova E (2001). Mode and tempo of tangential cell migration in the cerebellar external granular layer. The Journal of neuroscience, 21(2): 527–540

83
Kozminski K G, Johnson K A, Forscher P, Rosenbaum J L (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA, 90(12): 5519–5523

DOI PMID

84
Kriegstein A, Alvarez-Buylla A (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32(1): 149–184

DOI PMID

85
Kumamoto, N.Gu, Y., (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15(3): 399–405, S391

86
Kvajo M, McKellar H, Arguello P A, Drew L J, Moore H, MacDermott A B, Karayiorgou M, Gogos J A (2008). A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA, 105(19): 7076–7081

DOI PMID

87
Lancaster M A, Gleeson J G (2009). The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet. Dev, 19(3): 220–229

88
Lee J E, Gleeson J G (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol, 24(2): 98–105

DOI PMID

89
Li J, Lee W L, Cooper J A (2005). NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol, 7(7): 686–690

DOI PMID

90
Lienkamp S, Ganner A, Walz G (2012). Inversin, Wnt signaling and primary cilia. Differentiation, 83(2): S49–S55

DOI PMID

91
Louvi A, Grove E A (2011). Cilia in the CNS: the quiet organelle claims center stage. Neuron, 69(6): 1046–1060

DOI PMID

92
Mao Y W, Ge X C, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 136(6): 1017–1031

DOI PMID

93
McAllister A K (2002). Conserved cues for axon and dendrite growth in the developing cortex. Neuron, 33(1): 2–4

DOI PMID

94
Millar J K, Christie S, Porteous D J (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun, 311(4): 1019–1025

DOI PMID

95
Mirzadeh Z, Han Y G, Soriano-Navarro M, Garc�a-Verdugo J M, Alvarez-Buylla A (2010). Cilia organize ependymal planar polarity. J Neurosci, 30(7): 2600–2610

DOI PMID

96
Morgan J L, Dhingra A, Vardi N, Wong R O (2006). Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci, 9(1): 85–92

DOI PMID

97
Morris J A, Kandpal G, Ma L, Austin C P (2003). DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet, 12(13): 1591–1608

DOI PMID

98
Nachury M V, Loktev A V, Zhang Q, Westlake C J, Per�nen J, Merdes A, Slusarski D C, Scheller R H, Bazan J F, Sheffield V C, Jackson P K (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6): 1201–1213

DOI PMID

99
Noctor S C, Mart�nez-Cerde�o V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7(2): 136–144

DOI PMID

100
Ocbina P J, Dizon M L V, Shin L, Szele F G (2006). Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres. Mol Cell Neurosci, 33(2): 126–135

DOI PMID

101
Olbrich H, H�ffner K, Kispert A, V�lkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone P G, Knowles M, Mitchison H M, Meeks M, Chung E M, Hildebrandt F, Sudbrak R, Omran H (2002). Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet, 30(2): 143–144

DOI PMID

102
Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten M E, Snyder S H, Ross C A, Sawa A (2003). Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA, 100(1): 289–294

DOI PMID

103
Palazzo A F, Joseph H L (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current biology, CB 11(19): 1536–1541

104
Pazour G J, Dickert B L, Vucica Y, Seeley E S, Rosenbaum J L, Witman G B, Cole D G (2000). Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 151(3): 709–718

DOI PMID

105
Pazour G J, Witman G B (2003). The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol, 15(1): 105–110

DOI PMID

106
Pedersen L B, Rosenbaum J L (2008). Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol, 85: 23–61

DOI PMID

107
Phillips C L, Miller K J, Filson A J, N�rnberger J, Clendenon J L, Cook G W, Dunn K W, Overbeek P A, Gattone V H 2nd, Bacallao R L (2004). Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol, 15(7): 1744–1755

DOI PMID

108
Polleux F, Giger R J, Ginty D D, Kolodkin A L, Ghosh A (1998). Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science, 282(5395): 1904–1906

DOI PMID

109
Polleux F, Morrow T, Ghosh A (2000). Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature, 404(6778): 567–573

DOI PMID

110
Raftopoulou M, Hall A (2004). Cell migration: Rho GTPases lead the way. Dev Biol, 265(1): 23–32

DOI PMID

111
Rakic P (1971). Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol, 141(3): 283–312

DOI PMID

112
Rakic P (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol, 145(1): 61–83

DOI PMID

113
Randlett O, Poggi L, Zolessi F R, Harris W A (2011). The oriented emergence of axons from retinal ganglion cells is directed by laminin contact inβvivo. Neuron, 70(2): 266–280

DOI PMID

114
Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376

DOI PMID

115
Ross A J, May-Simera H, Eichers E R, Kai M, Hill J, Jagger D J, Leitch C C, Chapple J P, Munro P M, Fisher S, Tan P L, Phillips H M, Leroux M R, Henderson D J, Murdoch J N, Copp A J, Eliot M M, Lupski J R, Kemp D T, Dollfus H, Tada M, Katsanis N, Forge A, Beales P L (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet, 37(10): 1135–1140

DOI PMID

116
Saito T, Nakatsuji N (2001). Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol, 240(1): 237–246

DOI PMID

117
Salathe M (2007). Regulation of mammalian ciliary beating. Annu Rev Physiol, 69(1): 401–422

DOI PMID

118
Sapir T, Sapoznik S(2008). Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. The Journal of neuroscience, 28(22): 5710–5720

119
Sapir T, Shmueli A (2008). Antagonistic effects of doublecortin and MARK2/Par-1 in the developing cerebral cortex. The Journal of neuroscience, 28(48): 13008–13013.

120
Schneider L, Clement C A, Teilmann S C, Pazour G J, Hoffmann E K, Satir P, Christensen S T (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol, 15(20): 1861–1866

DOI PMID

121
Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo M M (2007). LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 129(3): 565–577

DOI PMID

122
Shi S-H, Cheng T (2004). APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol, CB 14(22): 2025–2032

123
Shi S H, Jan L Y, Jan Y N (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112(1): 63–75

DOI PMID

124
Shiba D, Yamaoka Y, Hagiwara H, Takamatsu T, Hamada H, Yokoyama T (2009). Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J Cell Sci, 122(Pt 1): 44–54

DOI PMID

125
Shoukimas G M, Hinds J W (1978). The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J Comp Neurol, 179(4): 795–830

DOI PMID

126
Shu T Z, Ayala R, Nguyen M D, Xie Z, Gleeson J G, Tsai L H (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron, 44(2): 263–277

DOI PMID

127
Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kr�nig C, Schermer B, Benzing T, Cabello O A, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005). Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet, 37(5): 537–543

DOI PMID

128
Spassky N, Han Y G, Aguilar A, Strehl L, Besse L, Laclef C, Ros M R, Garcia-Verdugo J M, Alvarez-Buylla A (2008). Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol, 317(1): 246–259

DOI PMID

129
Stiess M, Maghelli N, Kapitein L C, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad C C, Tolić-Nørrelykke I M, Bradke F (2010). Axon extension occurs independently of centrosomal microtubule nucleation. Science, 327(5966): 704–707

DOI PMID

130
Stottmann R W, Tran P V, Turbe-Doan A, Beier D R (2009). Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol, 335(1): 166–178

DOI PMID

131
Tanaka T, Serneo F F, Higgins C, Gambello M J, Wynshaw-Boris A, Gleeson J G (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol, 165(5): 709–721

DOI PMID

132
Taya S, Shinoda T (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. The Journal of neuroscience, 27(1): 15–26

133
Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci, 27(1): 15–26

DOI PMID

134
Teichmann H M, Shen K (2011). UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci, 14(2): 165–172

DOI PMID

135
ten Donkelaar H J, Hoevenaars F, Wesseling P (2000). A case of Joubert’s syndrome with extensive cerebral malformations. Clin Neuropathol, 19(2): 85–93

PMID

136
Tsai J W, Chen Y, Kriegstein A R, Vallee R B (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol, 170(6): 935–945

DOI PMID

137
Tsai L H, Gleeson J G (2005). Nucleokinesis in neuronal migration. Neuron, 46(3): 383–388

DOI PMID

138
Umeshima H, Hirano T, Kengaku M (2007). Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA, 104(41): 16182–16187

DOI PMID

139
Vergnolle M A S, Taylor S S (2007). Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol, 17(13): 1173–1179

DOI PMID

140
Wallingford J B (2010). Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol, 22(5): 597–604

DOI PMID

141
Wheatley D N (2005). Landmarks in the first hundred years of primary (9+0) cilium research. Cell Biol Int, 29(5): 333–339

DOI PMID

142
Wiens C J, Tong Y F, Esmail M A, Oh E, Gerdes J M, Wang J, Tempel W, Rattner J B, Katsanis N, Park H W, Leroux M R (2010). Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem, 285(21): 16218–16230

DOI PMID

143
Willaredt M A, Hasenpusch-Theil K, Gardner H A, Kitanovic I, Hirschfeld-Warneken V C, Gojak C P, Gorgas K, Bradford C L, Spatz J, W�lfl S, Theil T, Tucker K L (2008). A crucial role for primary cilia in cortical morphogenesis. J Neurosci, 28(48): 12887–12900

DOI PMID

144
Wong K, Ren X R, Huang Y Z, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay S M, Mei L, Wu J Y, Xiong W C, Rao Y (2001). Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell, 107(2): 209–221

DOI PMID

145
Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu J Y, Rao Y (1999). Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature, 400(6742): 331–336

DOI PMID

146
Xiang X (2003). LIS1 at the microtubule plus end and its role in dynein-mediated nuclear migration. J Cell Biol, 160(3): 289–290

DOI PMID

147
Yamada M, Toba S, Yoshida Y, Haratani K, Mori D, Yano Y, Mimori-Kiyosue Y, Nakamura T, Itoh K, Fushiki S, Setou M, Wynshaw-Boris A, Torisawa T, Toyoshima Y Y, Hirotsune S (2008). LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J, 27(19): 2471–2483

DOI PMID

148
Ylikorkala A, Rossi D J, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, M�kel� T P (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science, 293(5533): 1323–1326

DOI PMID

149
Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005). GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 120(1): 137–149

DOI PMID

150
Yuan S A L, Li J D, Diener D R, Choma M A, Rosenbaum J L, Sun Z (2012). Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci USA, 109(6): 2021–2026

DOI PMID

151
Zaghloul N A, Katsanis N (2009). Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest, 119(3): 428–437

DOI PMID

152
Zhang Q H, Seo S, Bugge K, Stone E M, Sheffield V C (2012). BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet, 21(9): 1945–1953

DOI PMID

153
Zmuda J F, Rivas R J (1998). The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil Cytoskeleton, 41(1): 18–38

DOI PMID

154
Zmuda J F, Rivas R J (2000). Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro. J Neurobiol, 43(4): 313–328

DOI PMID

155
Zolessi F R, Poggi L, Wilkinson C J, Chien C B, Harris W A (2006). Polarization and orientation of retinal ganglion cells in vivo. Neural Dev, 1(1): 2

DOI PMID

Outlines

/