Sequestosome 1/p62: a multi-domain protein with multi-faceted functions
Received date: 04 Feb 2012
Accepted date: 08 Mar 2012
Published date: 01 Jun 2012
Copyright
The sequestosome 1/p62 protein has been implicated in the regulation of a multitude of cellular processes such as NF-кB signaling, NRF2-driven oxidative stress response, protein turnover through the ubiquitin-proteasome pathway and the autophagosome/lysosome pathway, apoptosis and cellular metabolism. The domain structure of p62 also reflects this functional complexity since the protein appears to be a mosaic of protein interaction domains and motifs. Deregulation of the level and function of p62 and/or p62 mutations have been linked to a number of human diseases including Paget’s disease of the bone, obesity, liver diseases, tumorigenesis and neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer’s disease. In this article, we review the current understanding of the involvement of p62 in cellular processes under physiologic and pathological conditions.
Xiaoyan LIU , Jozsef GAL , Haining ZHU . Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Frontiers in Biology, 2012 , 7(3) : 189 -201 . DOI: 10.1007/s11515-012-1217-z
1 |
Aggarwal B B (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 3(9): 745–756
|
2 |
Babu J R, Geetha T, Wooten M W (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 94(1): 192–203
|
3 |
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
|
4 |
Blonska M, Shambharkar P B, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem, 280(52): 43056–43063
|
5 |
Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pagès G, Pouysségur J, Le Marchand-Brustel Y, Binétruy B (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 54(2): 402–411
|
6 |
Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binétruy B (2002). Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J, 361(3): 621–627
|
7 |
Braak H, Ludolph A, Thal D R, Del Tredici K (2010). Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol, 120(1): 67–74
|
8 |
Cavey J R, Ralston S H, Sheppard P W, Ciani B, Gallagher T R, Long J E, Searle M S, Layfield R (2006). Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int, 78(5): 271–277
|
9 |
Chamoux E, Couture J, Bisson M, Morissette J, Brown J P, Roux S (2009). The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol, 23(10): 1668–1680
|
10 |
Ciani B, Layfield R, Cavey J R, Sheppard P W, Searle M S (2003). Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem, 278(39): 37409–37412
|
11 |
Copple I M, Lister A, Obeng A D, Kitteringham N R, Jenkins R E, Layfield R, Foster B J, Goldring C E, Park B K (2010). Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem, 285(22): 16782–16788
|
12 |
Cullinan S B, Gordan J D, Jin J, Harper J W, Diehl J A (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 24(19): 8477–8486
|
13 |
Darnay B G, Besse A, Poblenz A T, Lamothe B, Jacoby J J (2007). TRAFs in RANK signaling. Adv Exp Med Biol, 597: 152–159
|
14 |
de Bie P, Ciechanover A (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ, 18(9): 1393–1402
|
15 |
Deng H X, Zhai H, Bigio E H, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T (2010). FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol, 67(6): 739–748
|
16 |
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen Z J (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103(2): 351–361
|
17 |
Denk H, Stumptner C, Fuchsbichler A, Müller T, Farr G, Müller W, Terracciano L, Zatloukal K (2006). Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non-neoplastic hepatocytes related? J Pathol, 208(5): 653–661
|
18 |
Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell, 44(1): 134–146
|
19 |
Duran A, Linares J F, Galvez A S, Wikenheiser K, Flores J M, Diaz-Meco M T, Moscat J (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell, 13(4): 343–354
|
20 |
Durán A, Serrano M, Leitges M, Flores J M, Picard S, Brown J P, Moscat J, Diaz-Meco M T (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell, 6(2): 303–309
|
21 |
Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell, 22(2): 245–257
|
22 |
Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo M L, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi S M, Di Fede G, Sferrazza C, Rini G B, Melchiorre D, Matucci-Cerinic M, Brandi M L (2004). Two novel mutations at exon 8 of the Sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res, 19(6): 1013–1017
|
23 |
Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri M F, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi M L, and the GenePage Project (2009). Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int, 84(1): 20–37
|
24 |
Fecto F, Yan J, Vemula S P, Liu E, Yang Y, Chen W, Zheng J G, Shi Y, Siddique N, Arrat H, Donkervoort S, Ajroud-Driss S, Sufit R L, Heller S L, Deng H X, Siddique T (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol, 68(11): 1440–1446
|
25 |
Feng Y, Longmore G D (2005). The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex. Mol Cell Biol, 25(10): 4010–4022
|
26 |
Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet, 18(24): 4868–4878
|
27 |
Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher E M, Isaacs A, Brech A, Stenmark H, Simonsen A (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol, 179(3): 485–500
|
28 |
Gal J, Ström A L, Kilty R, Zhang F, Zhu H (2007). p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem, 282(15): 11068–11077
|
29 |
Gal J, Ström A L, Kwinter D M, Kilty R, Zhang J, Shi P, Fu W, Wooten M W, Zhu H (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem, 111(4): 1062–1073
|
30 |
Geetha T, Jiang J, Wooten M W (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell, 20(2): 301–312
|
31 |
Geetha T, Seibenhener M L, Chen L, Madura K, Wooten M W (2008). p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun, 374(1): 33–37
|
32 |
Goode A, Layfield R (2010). Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol, 63(3): 199–203
|
33 |
Gump J M, Thorburn A (2011). Autophagy and apoptosis: what is the connection? Trends Cell Biol, 21(7): 387–392
|
34 |
Habelhah H, Takahashi S, Cho S G, Kadoya T, Watanabe T, Ronai Z (2004). Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J, 23(2): 322–332
|
35 |
Helfrich M H, Hocking L J (2008). Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys, 473(2): 172–182
|
36 |
Heyninck K, Beyaert R (2001). Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun, 4(5): 259–265
|
37 |
Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008). White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol, 116(2): 183–191
|
38 |
Hocking L J, Lucas G J, Daroszewska A, Cundy T, Nicholson G C, Donath J, Walsh J P, Finlayson C, Cavey J R, Ciani B, Sheppard P W, Searle M S, Layfield R, Ralston S H (2004). Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res, 19(7): 1122–1127
|
39 |
Hocking L J, Lucas G J, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson G C, Ward L, Bennett S T, Wuyts W, Van Hul W, Ralston S H (2002). Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet, 11(22): 2735–2739
|
40 |
Hou W, Han J, Lu C, Goldstein L A, Rabinowich H (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy, 6(7): 891–900
|
41 |
Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity, 4(4): 387–396
|
42 |
Hsu H, Lacey D L, Dunstan C R, Solovyev I, Colombero A, Timms E, Tan H L, Elliott G, Kelley M J, Sarosi I, Wang L, Xia X Z, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass M B, Boyle W J (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA, 96(7): 3540–3545
|
43 |
Ichimura Y, Kumanomidou T, Sou Y S, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem, 283(33): 22847–22857
|
44 |
Ishii T, Yanagawa T, Kawane T, Yuki K, Seita J, Yoshida H, Bannai S (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem Biophys Res Commun, 226(2): 456–460
|
45 |
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun, 236(2): 313–322
|
46 |
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel J D, Yamamoto M (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 13(1): 76–86
|
47 |
Jain A, Lamark T, Sjøttem E, Larsen K B, Awuh J A, Øvervatn A, McMahon M, Hayes J D, Johansen T (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem, 285(29): 22576–22591
|
48 |
Jimi E, Aoki K, Saito H, D’Acquisto F, May M J, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004). Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med, 10(6): 617–624
|
49 |
Jin W, Chang M, Paul E M, Babu G, Lee A J, Reiley W, Wright A, Zhang M, You J, Sun S C (2008). Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest, 118(5): 1858–1866
|
50 |
Jin Z, Li Y, Pitti R, Lawrence D, Pham V C, Lill J R, Ashkenazi A (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell, 137(4): 721–735
|
51 |
Johnson-Pais T L, Wisdom J H, Weldon K S, Cody J D, Hansen M F, Singer F R, Leach R J (2003). Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res, 18(10): 1748–1753
|
52 |
Johnson J O, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin V M, Trojanowski J Q, Gibbs J R, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez D G, Arepalli S, Chong S, Schymick J C, Rothstein J, Landi F, Wang Y D, Calvo A, Mora G, Sabatelli M, Monsurrò M R, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, the ITALSGEN Consortium, Galassi G, Scholz S W, Taylor J P, Restagno G, Chiò A, Traynor B J (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5): 857–864
|
53 |
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295
|
54 |
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21): 5720–5728
|
55 |
Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2): 163–175
|
56 |
Kim P K, Hailey D W, Mullen R T, Lippincott-Schwartz J (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA, 105(52): 20567–20574
|
57 |
Klionsky D J, Abeliovich H, Agostinis P, Agrawal D K, Aliev G, Askew D S, Baba M, Baehrecke E H, Bahr B A, Ballabio A, Bamber B A, Bassham D C, Bergamini E, Bi X, Biard-Piechaczyk M, Blum J S, Bredesen D E, Brodsky J L, Brumell J H, Brunk U T, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin L S, Choi A, Chu C T, Chung J, Clarke P G, Clark R S, Clarke S G, Clavé C, Cleveland J L, Codogno P, Colombo M I, Coto-Montes A, Cregg J M, Cuervo A M, Debnath J, Demarchi F, Dennis P B, Dennis P A, Deretic V, Devenish R J, Di Sano F, Dice J F, Difiglia M, Dinesh-Kumar S, Distelhorst C W, Djavaheri-Mergny M, Dorsey F C, Dröge W, Dron M, Dunn W A Jr, Duszenko M, Eissa N T, Elazar Z, Esclatine A, Eskelinen E L, Fésüs L, Finley K D, Fuentes J M, Fueyo J, Fujisaki K, Galliot B, Gao F B, Gewirtz D A, Gibson S B, Gohla A, Goldberg A L, Gonzalez R, González-Estévez C, Gorski S, Gottlieb R A, Häussinger D, He Y W, Heidenreich K, Hill J A, Høyer-Hansen M, Hu X, Huang W P, Iwasaki A, Jäättelä M, Jackson W T, Jiang X, Jin S, Johansen T, Jung J U, Kadowaki M, Kang C, Kelekar A, Kessel D H, Kiel J A, Kim H P, Kimchi A, Kinsella T J, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács A L, Kroemer G, Kuan C Y, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei H Y, Lenardo M J, Levine B, Lieberman A, Lim K L, Lin F C, Liou W, Liu L F, Lopez-Berestein G, López-Otín C, Lu B, Macleod K F, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer A J, Meléndez A, Michels P, Miotto G, Mistiaen W P, Mizushima N, Mograbi B, Monastyrska I, Moore M N, Moreira P I, Moriyasu Y, Motyl T, Münz C, Murphy L O, Naqvi N I, Neufeld T P, Nishino I, Nixon R A, Noda T, Nürnberg B, Ogawa M, Oleinick N L, Olsen L J, Ozpolat B, Paglin S, Palmer G E, Papassideri I, Parkes M, Perlmutter D H, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein D C, Ryan K M, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen P O, Seleverstov O, Settleman J, Shacka J J, Shapiro I M, Sibirny A, Silva-Zacarin E C, Simon H U, Simone C, Simonsen A, Smith M A, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug P E, Subauste C S, Sugimoto S, Sulzer D, Suzuki T, Swanson M S, Tabas I, Takeshita F, Talbot N J, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor G S, Taylor J P, Terman A, Tettamanti G, Thompson C B, Thumm M, Tolkovsky A M, Tooze S A, Truant R, Tumanovska L V, Uchiyama Y, Ueno T, Uzcátegui N L, van der Klei I, Vaquero E C, Vellai T, Vogel M W, Wang H G, Webster P, Wiley J W, Xi Z, Xiao G, Yahalom J, Yang J M, Yap G, Yin X M, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter R L (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2): 151–175
|
58 |
Kobayashi A, Kang M I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol, 24(16): 7130–7139
|
59 |
Komatsu M, Ichimura Y (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett, 584(7): 1374–1378
|
60 |
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
|
61 |
Komatsu M, Waguri S, Koike M, Sou Y S, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6): 1149–1163
|
62 |
Korolchuk V I, Menzies F M, Rubinsztein D C (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett, 584(7): 1393–1398
|
63 |
Kuusisto E, Salminen A, Alafuzoff I (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport, 12(10): 2085–2090
|
64 |
Kuusisto E, Salminen A, Alafuzoff I (2002). Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol, 28(3): 228–237
|
65 |
Kuusisto E, Suuronen T, Salminen A (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun, 280(1): 223–228
|
66 |
Lacey D L, Timms E, Tan H L, Kelley M J, Dunstan C R, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W J (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2): 165–176
|
67 |
Lallena M J, Diaz-Meco M T, Bren G, Payá C V, Moscat J (1999). Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol, 19(3): 2180–2188
|
68 |
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem, 278(36): 34568–34581
|
69 |
Lamothe B, Webster W K, Gopinathan A, Besse A, Campos A D, Darnay B G (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun, 359(4): 1044–1049
|
70 |
Lau A, Wang X J, Zhao F, Villeneuve N F, Wu T, Jiang T, Sun Z, White E, Zhang D D (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol, 30(13): 3275–3285
|
71 |
Laurin N, Brown J P, Morissette J, Raymond V (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet, 70(6): 1582–1588
|
72 |
Layfield R (2007). The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med, 9(27): 1–13
|
73 |
Layfield R, Ciani B, Ralston S H, Hocking L J, Sheppard P W, Searle M S, Cavey J R (2004). Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans, 32(5): 728–730
|
74 |
Layfield R, Hocking L J (2004). SQSTM1 and Paget’s disease of bone. Calcif Tissue Int, 75(5): 347–357
|
75 |
Lee T H, Shank J, Cusson N, Kelliher M A (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem, 279(32): 33185–33191
|
76 |
Lewis T S, Shapiro P S, Ahn N G (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49–139
|
77 |
Li H, Kobayashi M, Blonska M, You Y, Lin X (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem, 281(19): 13636–13643
|
78 |
Maekawa S, Leigh P N, King A, Jones E, Steele J C, Bodi I, Shaw C E, Hortobagyi T, Al-Sarraj S (2009). TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology, 29(6): 672–683
|
79 |
Martin P, Diaz-Meco M T, Moscat J (2006). The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J, 25(15): 3524–3533
|
80 |
Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6): 1062–1075
|
81 |
Matsuoka T, Fujii N, Kondo A, Iwaki A, Hokonohara T, Honda H, Sasaki K, Suzuki S O, Iwaki T (2011). An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology, 31(1): 71–76
|
82 |
McMahon M, Itoh K, Yamamoto M, Hayes J D (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem, 278(24): 21592–21600
|
83 |
Micheau O, Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 114(2): 181–190
|
84 |
Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006). Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci, 249(1): 13–18
|
85 |
Moscat J, Diaz-Meco M T (2011). Feedback on fat: p62-mTORC1-autophagy connections. Cell, 147(4): 724–727
|
86 |
Moscat J, Diaz-Meco M T, Wooten M W (2007). Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci, 32(2): 95–100
|
87 |
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557
|
88 |
Nagaoka U, Kim K, Jana N R, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004). Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem, 91(1): 57–68
|
89 |
Najat D, Garner T, Hagen T, Shaw B, Sheppard P W, Falchetti A, Marini F, Brandi M L, Long J E, Cavey J R, Searle M S, Layfield R (2009). Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res, 24(4): 632–642
|
90 |
Nakano T, Nakaso K, Nakashima K, Ohama E (2004). Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol, 107(4): 359–364
|
91 |
Norman J M, Cohen G M, Bampton E T (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 6(8): 1042–1056
|
92 |
Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377
|
93 |
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
|
94 |
Parkhitko A, Myachina F, Morrison T A, Hindi K M, Auricchio N, Karbowniczek M, Wu J J, Finkel T, Kwiatkowski D J, Yu J J, Henske E P (2011). Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA, 108(30): 12455–12460
|
95 |
Parkinson N, Ince P G, Smith M O, Highley R, Skibinski G, Andersen P M, Morrison K E, Pall H S, Hardiman O, Collinge J, Shaw P J, Fisher E M, and the MRC Proteomics in ALS Study, and the FReJA Consortium (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology, 67(6): 1074–1077
|
96 |
Polak P, Cybulski N, Feige J N, Auwerx J, Rüegg M A, Hall M N (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab, 8(5): 399–410
|
97 |
Puls A, Schmidt S, Grawe F, Stabel S (1997). Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA, 94(12): 6191–6196
|
98 |
Quinn J M, Elliott J, Gillespie M T, Martin T J (1998). A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 139(10): 4424–4427
|
99 |
Rabouille C, Levine T P, Peters J M, Warren G (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell, 82(6): 905–914
|
100 |
Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom A L, Kemppainen R, Cox N, Zhu H, Wooten M C, Diaz-Meco M T, Moscat J, Wooten M W (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem, 106(1): 107–120
|
101 |
Ravikumar B, Vacher C, Berger Z, Davies J E, Luo S, Oroz L G, Scaravilli F, Easton D F, Duden R, O’Kane C J, Rubinsztein D C (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 36(6): 585–595
|
102 |
Rea S L, Walsh J P, Ward L, Magno A L, Ward B K, Shaw B, Layfield R, Kent G N, Xu J, Ratajczak T (2009). Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res, 24(7): 1216–1223
|
103 |
Rea S L, Walsh J P, Ward L, Yip K, Ward B K, Kent G N, Steer J H, Xu J, Ratajczak T (2006). A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res, 21(7): 1136–1145
|
104 |
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222
|
105 |
Rusten T E, Simonsen A (2008). ESCRT functions in autophagy and associated disease. Cell Cycle, 7(9): 1166–1172
|
106 |
Sanz L, Diaz-Meco M T, Nakano H, Moscat J (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J, 19(7): 1576–1586
|
107 |
Sanz L, Sanchez P, Lallena M J, Diaz-Meco M T, Moscat J (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J, 18(11): 3044–3053
|
108 |
Seibenhener M L, Babu J R, Geetha T, Wong H C, Krishna N R, Wooten M W (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol, 24(18): 8055–8068
|
109 |
Seibenhener M L, Geetha T, Wooten M W (2007). Sequestosome 1/p62—more than just a scaffold. FEBS Lett, 581(2): 175–179
|
110 |
Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, Leguern E, Duyckaerts C (2009). Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol, 118(4): 561–573
|
111 |
Shi C S, Kehrl J H (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem, 278(17): 15429–15434
|
112 |
Shin J (1998). P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res, 21(6): 629–633
|
113 |
Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci, 121(16): 2685–2695
|
114 |
Sundaram K, Shanmugarajan S, Rao D S, Reddy S V (2011). Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology, 152(11): 4180–4189
|
115 |
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25(8): 795–800
|
116 |
Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, Nukina N, Iwaki T, Fukumaki Y, Kira J I (2010). Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol, 119(3): 355–364
|
117 |
Teitelbaum S L, Ross F P (2003). Genetic regulation of osteoclast development and function. Nat Rev Genet, 4(8): 638–649
|
118 |
Um S H, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini P R, Kozma S C, Auwerx J, Thomas G (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 431(7005): 200–205
|
119 |
Vadlamudi R K, Joung I, Strominger J L, Shin J (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem, 271(34): 20235–20237
|
120 |
Van Antwerp D J, Martin S J, Verma I M, Green D R (1998). Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol, 8(3): 107–111
|
121 |
Varelas P N, Bertorini T E, Kapaki E, Papageorgiou C T (1997). Paget’s disease of bone and motor neuron disease. Muscle Nerve, 20(5): 630
|
122 |
Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop D R, Harada T, Engel J D, Yamamoto M (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet, 35(3): 238–245
|
123 |
Wang C, Deng L, Hong M, Akkaraju G R, Inoue J, Chen Z J (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844): 346–351
|
124 |
Watts G D, Wymer J, Kovach M J, Mehta S G, Mumm S, Darvish D, Pestronk A, Whyte M P, Kimonis V E (2004). Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet, 36(4): 377–381
|
125 |
Wilson M I, Gill D J, Perisic O, Quinn M T, Williams R L (2003). PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell, 12(1): 39–50
|
126 |
Wooten M W, Geetha T, Babu J R, Seibenhener M L, Peng J, Cox N, Diaz-Meco M T, Moscat J (2008). Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem, 283(11): 6783–6789
|
127 |
Wooten M W, Geetha T, Seibenhener M L, Babu J R, Diaz-Meco M T, Moscat J (2005). The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem, 280(42): 35625–35629
|
128 |
Wooten M W, Seibenhener M L, Mamidipudi V, Diaz-Meco M T, Barker P A, Moscat J (2001). The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J Biol Chem, 276(11): 7709–7712
|
129 |
Wu Y, Zhou B P (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer, 102(4): 639–644
|
130 |
Xu J, Wu H F, Ang E S, Yip K, Woloszyn M, Zheng M H, Tan R X (2009). NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev, 20(1): 7–17
|
131 |
Yang W L, Zhang X, Lin H K (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 29(32): 4493–4503
|
132 |
Yue Z (2007). Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy, 3(2): 139–141
|
133 |
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol, 160(1): 255–263
|
134 |
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A, 106(47): 19860–19865
|
135 |
Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem, 279(44): 45676–45684
|
/
〈 | 〉 |