REVIEW

Sequestosome 1/p62: a multi-domain protein with multi-faceted functions

  • Xiaoyan LIU ,
  • Jozsef GAL ,
  • Haining ZHU
Expand
  • Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506, USA

Received date: 04 Feb 2012

Accepted date: 08 Mar 2012

Published date: 01 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The sequestosome 1/p62 protein has been implicated in the regulation of a multitude of cellular processes such as NF-кB signaling, NRF2-driven oxidative stress response, protein turnover through the ubiquitin-proteasome pathway and the autophagosome/lysosome pathway, apoptosis and cellular metabolism. The domain structure of p62 also reflects this functional complexity since the protein appears to be a mosaic of protein interaction domains and motifs. Deregulation of the level and function of p62 and/or p62 mutations have been linked to a number of human diseases including Paget’s disease of the bone, obesity, liver diseases, tumorigenesis and neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer’s disease. In this article, we review the current understanding of the involvement of p62 in cellular processes under physiologic and pathological conditions.

Cite this article

Xiaoyan LIU , Jozsef GAL , Haining ZHU . Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Frontiers in Biology, 2012 , 7(3) : 189 -201 . DOI: 10.1007/s11515-012-1217-z

Acknowledgments

This study was in part supported by NIH grant R21-AG032567 to H. Z.
1
Aggarwal B B (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 3(9): 745–756

DOI PMID

2
Babu J R, Geetha T, Wooten M W (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 94(1): 192–203

DOI PMID

3
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614

DOI PMID

4
Blonska M, Shambharkar P B, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem, 280(52): 43056–43063

DOI PMID

5
Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pagès G, Pouysségur J, Le Marchand-Brustel Y, Binétruy B (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes, 54(2): 402–411

DOI PMID

6
Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binétruy B (2002). Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J, 361(3): 621–627

DOI PMID

7
Braak H, Ludolph A, Thal D R, Del Tredici K (2010). Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol, 120(1): 67–74

DOI PMID

8
Cavey J R, Ralston S H, Sheppard P W, Ciani B, Gallagher T R, Long J E, Searle M S, Layfield R (2006). Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int, 78(5): 271–277

DOI PMID

9
Chamoux E, Couture J, Bisson M, Morissette J, Brown J P, Roux S (2009). The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol, 23(10): 1668–1680

DOI PMID

10
Ciani B, Layfield R, Cavey J R, Sheppard P W, Searle M S (2003). Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem, 278(39): 37409–37412

DOI PMID

11
Copple I M, Lister A, Obeng A D, Kitteringham N R, Jenkins R E, Layfield R, Foster B J, Goldring C E, Park B K (2010). Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem, 285(22): 16782–16788

DOI PMID

12
Cullinan S B, Gordan J D, Jin J, Harper J W, Diehl J A (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 24(19): 8477–8486

DOI PMID

13
Darnay B G, Besse A, Poblenz A T, Lamothe B, Jacoby J J (2007). TRAFs in RANK signaling. Adv Exp Med Biol, 597: 152–159

DOI PMID

14
de Bie P, Ciechanover A (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ, 18(9): 1393–1402

DOI PMID

15
Deng H X, Zhai H, Bigio E H, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T (2010). FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol, 67(6): 739–748

PMID

16
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen Z J (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103(2): 351–361

DOI PMID

17
Denk H, Stumptner C, Fuchsbichler A, Müller T, Farr G, Müller W, Terracciano L, Zatloukal K (2006). Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non-neoplastic hepatocytes related? J Pathol, 208(5): 653–661

DOI PMID

18
Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell, 44(1): 134–146

DOI PMID

19
Duran A, Linares J F, Galvez A S, Wikenheiser K, Flores J M, Diaz-Meco M T, Moscat J (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell, 13(4): 343–354

DOI PMID

20
Durán A, Serrano M, Leitges M, Flores J M, Picard S, Brown J P, Moscat J, Diaz-Meco M T (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell, 6(2): 303–309

DOI PMID

21
Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell, 22(2): 245–257

DOI PMID

22
Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo M L, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi S M, Di Fede G, Sferrazza C, Rini G B, Melchiorre D, Matucci-Cerinic M, Brandi M L (2004). Two novel mutations at exon 8 of the Sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res, 19(6): 1013–1017

DOI PMID

23
Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri M F, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi M L, and the GenePage Project (2009). Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int, 84(1): 20–37

DOI PMID

24
Fecto F, Yan J, Vemula S P, Liu E, Yang Y, Chen W, Zheng J G, Shi Y, Siddique N, Arrat H, Donkervoort S, Ajroud-Driss S, Sufit R L, Heller S L, Deng H X, Siddique T (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol, 68(11): 1440–1446

DOI PMID

25
Feng Y, Longmore G D (2005). The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex. Mol Cell Biol, 25(10): 4010–4022

DOI PMID

26
Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet, 18(24): 4868–4878

DOI PMID

27
Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher E M, Isaacs A, Brech A, Stenmark H, Simonsen A (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol, 179(3): 485–500

DOI PMID

28
Gal J, Ström A L, Kilty R, Zhang F, Zhu H (2007). p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem, 282(15): 11068–11077

DOI PMID

29
Gal J, Ström A L, Kwinter D M, Kilty R, Zhang J, Shi P, Fu W, Wooten M W, Zhu H (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem, 111(4): 1062–1073

DOI PMID

30
Geetha T, Jiang J, Wooten M W (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell, 20(2): 301–312

DOI PMID

31
Geetha T, Seibenhener M L, Chen L, Madura K, Wooten M W (2008). p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun, 374(1): 33–37

DOI PMID

32
Goode A, Layfield R (2010). Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol, 63(3): 199–203

DOI PMID

33
Gump J M, Thorburn A (2011). Autophagy and apoptosis: what is the connection? Trends Cell Biol, 21(7): 387–392

DOI PMID

34
Habelhah H, Takahashi S, Cho S G, Kadoya T, Watanabe T, Ronai Z (2004). Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J, 23(2): 322–332

DOI PMID

35
Helfrich M H, Hocking L J (2008). Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys, 473(2): 172–182

DOI PMID

36
Heyninck K, Beyaert R (2001). Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun, 4(5): 259–265

DOI PMID

37
Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008). White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol, 116(2): 183–191

DOI PMID

38
Hocking L J, Lucas G J, Daroszewska A, Cundy T, Nicholson G C, Donath J, Walsh J P, Finlayson C, Cavey J R, Ciani B, Sheppard P W, Searle M S, Layfield R, Ralston S H (2004). Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res, 19(7): 1122–1127

DOI PMID

39
Hocking L J, Lucas G J, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson G C, Ward L, Bennett S T, Wuyts W, Van Hul W, Ralston S H (2002). Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet, 11(22): 2735–2739

DOI PMID

40
Hou W, Han J, Lu C, Goldstein L A, Rabinowich H (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy, 6(7): 891–900

DOI PMID

41
Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity, 4(4): 387–396

DOI PMID

42
Hsu H, Lacey D L, Dunstan C R, Solovyev I, Colombero A, Timms E, Tan H L, Elliott G, Kelley M J, Sarosi I, Wang L, Xia X Z, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass M B, Boyle W J (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA, 96(7): 3540–3545

DOI PMID

43
Ichimura Y, Kumanomidou T, Sou Y S, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem, 283(33): 22847–22857

DOI PMID

44
Ishii T, Yanagawa T, Kawane T, Yuki K, Seita J, Yoshida H, Bannai S (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem Biophys Res Commun, 226(2): 456–460

DOI PMID

45
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun, 236(2): 313–322

DOI PMID

46
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel J D, Yamamoto M (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 13(1): 76–86

DOI PMID

47
Jain A, Lamark T, Sjøttem E, Larsen K B, Awuh J A, Øvervatn A, McMahon M, Hayes J D, Johansen T (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem, 285(29): 22576–22591

DOI PMID

48
Jimi E, Aoki K, Saito H, D’Acquisto F, May M J, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004). Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med, 10(6): 617–624

DOI PMID

49
Jin W, Chang M, Paul E M, Babu G, Lee A J, Reiley W, Wright A, Zhang M, You J, Sun S C (2008). Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest, 118(5): 1858–1866

DOI PMID

50
Jin Z, Li Y, Pitti R, Lawrence D, Pham V C, Lill J R, Ashkenazi A (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell, 137(4): 721–735

DOI PMID

51
Johnson-Pais T L, Wisdom J H, Weldon K S, Cody J D, Hansen M F, Singer F R, Leach R J (2003). Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res, 18(10): 1748–1753

DOI PMID

52
Johnson J O, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin V M, Trojanowski J Q, Gibbs J R, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez D G, Arepalli S, Chong S, Schymick J C, Rothstein J, Landi F, Wang Y D, Calvo A, Mora G, Sabatelli M, Monsurrò M R, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, the ITALSGEN Consortium, Galassi G, Scholz S W, Taylor J P, Restagno G, Chiò A, Traynor B J (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5): 857–864

DOI PMID

53
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295

DOI PMID

54
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21): 5720–5728

DOI PMID

55
Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2): 163–175

DOI PMID

56
Kim P K, Hailey D W, Mullen R T, Lippincott-Schwartz J (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA, 105(52): 20567–20574

DOI PMID

57
Klionsky D J, Abeliovich H, Agostinis P, Agrawal D K, Aliev G, Askew D S, Baba M, Baehrecke E H, Bahr B A, Ballabio A, Bamber B A, Bassham D C, Bergamini E, Bi X, Biard-Piechaczyk M, Blum J S, Bredesen D E, Brodsky J L, Brumell J H, Brunk U T, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin L S, Choi A, Chu C T, Chung J, Clarke P G, Clark R S, Clarke S G, Clavé C, Cleveland J L, Codogno P, Colombo M I, Coto-Montes A, Cregg J M, Cuervo A M, Debnath J, Demarchi F, Dennis P B, Dennis P A, Deretic V, Devenish R J, Di Sano F, Dice J F, Difiglia M, Dinesh-Kumar S, Distelhorst C W, Djavaheri-Mergny M, Dorsey F C, Dröge W, Dron M, Dunn W A Jr, Duszenko M, Eissa N T, Elazar Z, Esclatine A, Eskelinen E L, Fésüs L, Finley K D, Fuentes J M, Fueyo J, Fujisaki K, Galliot B, Gao F B, Gewirtz D A, Gibson S B, Gohla A, Goldberg A L, Gonzalez R, González-Estévez C, Gorski S, Gottlieb R A, Häussinger D, He Y W, Heidenreich K, Hill J A, Høyer-Hansen M, Hu X, Huang W P, Iwasaki A, Jäättelä M, Jackson W T, Jiang X, Jin S, Johansen T, Jung J U, Kadowaki M, Kang C, Kelekar A, Kessel D H, Kiel J A, Kim H P, Kimchi A, Kinsella T J, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács A L, Kroemer G, Kuan C Y, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei H Y, Lenardo M J, Levine B, Lieberman A, Lim K L, Lin F C, Liou W, Liu L F, Lopez-Berestein G, López-Otín C, Lu B, Macleod K F, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer A J, Meléndez A, Michels P, Miotto G, Mistiaen W P, Mizushima N, Mograbi B, Monastyrska I, Moore M N, Moreira P I, Moriyasu Y, Motyl T, Münz C, Murphy L O, Naqvi N I, Neufeld T P, Nishino I, Nixon R A, Noda T, Nürnberg B, Ogawa M, Oleinick N L, Olsen L J, Ozpolat B, Paglin S, Palmer G E, Papassideri I, Parkes M, Perlmutter D H, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein D C, Ryan K M, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen P O, Seleverstov O, Settleman J, Shacka J J, Shapiro I M, Sibirny A, Silva-Zacarin E C, Simon H U, Simone C, Simonsen A, Smith M A, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug P E, Subauste C S, Sugimoto S, Sulzer D, Suzuki T, Swanson M S, Tabas I, Takeshita F, Talbot N J, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor G S, Taylor J P, Terman A, Tettamanti G, Thompson C B, Thumm M, Tolkovsky A M, Tooze S A, Truant R, Tumanovska L V, Uchiyama Y, Ueno T, Uzcátegui N L, van der Klei I, Vaquero E C, Vellai T, Vogel M W, Wang H G, Webster P, Wiley J W, Xi Z, Xiao G, Yahalom J, Yang J M, Yap G, Yin X M, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter R L (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2): 151–175

PMID

58
Kobayashi A, Kang M I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol, 24(16): 7130–7139

DOI PMID

59
Komatsu M, Ichimura Y (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett, 584(7): 1374–1378

DOI PMID

60
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223

PMID

61
Komatsu M, Waguri S, Koike M, Sou Y S, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6): 1149–1163

DOI PMID

62
Korolchuk V I, Menzies F M, Rubinsztein D C (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett, 584(7): 1393–1398

DOI PMID

63
Kuusisto E, Salminen A, Alafuzoff I (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport, 12(10): 2085–2090

DOI PMID

64
Kuusisto E, Salminen A, Alafuzoff I (2002). Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol, 28(3): 228–237

DOI PMID

65
Kuusisto E, Suuronen T, Salminen A (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun, 280(1): 223–228

DOI PMID

66
Lacey D L, Timms E, Tan H L, Kelley M J, Dunstan C R, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W J (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2): 165–176

DOI PMID

67
Lallena M J, Diaz-Meco M T, Bren G, Payá C V, Moscat J (1999). Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol, 19(3): 2180–2188

PMID

68
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem, 278(36): 34568–34581

DOI PMID

69
Lamothe B, Webster W K, Gopinathan A, Besse A, Campos A D, Darnay B G (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun, 359(4): 1044–1049

DOI PMID

70
Lau A, Wang X J, Zhao F, Villeneuve N F, Wu T, Jiang T, Sun Z, White E, Zhang D D (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol, 30(13): 3275–3285

DOI PMID

71
Laurin N, Brown J P, Morissette J, Raymond V (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet, 70(6): 1582–1588

DOI PMID

72
Layfield R (2007). The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med, 9(27): 1–13

DOI PMID

73
Layfield R, Ciani B, Ralston S H, Hocking L J, Sheppard P W, Searle M S, Cavey J R (2004). Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans, 32(5): 728–730

DOI PMID

74
Layfield R, Hocking L J (2004). SQSTM1 and Paget’s disease of bone. Calcif Tissue Int, 75(5): 347–357

DOI PMID

75
Lee T H, Shank J, Cusson N, Kelliher M A (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem, 279(32): 33185–33191

DOI PMID

76
Lewis T S, Shapiro P S, Ahn N G (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49–139

DOI PMID

77
Li H, Kobayashi M, Blonska M, You Y, Lin X (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem, 281(19): 13636–13643

DOI PMID

78
Maekawa S, Leigh P N, King A, Jones E, Steele J C, Bodi I, Shaw C E, Hortobagyi T, Al-Sarraj S (2009). TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology, 29(6): 672–683

DOI PMID

79
Martin P, Diaz-Meco M T, Moscat J (2006). The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J, 25(15): 3524–3533

DOI PMID

80
Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6): 1062–1075

DOI PMID

81
Matsuoka T, Fujii N, Kondo A, Iwaki A, Hokonohara T, Honda H, Sasaki K, Suzuki S O, Iwaki T (2011). An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology, 31(1): 71–76

82
McMahon M, Itoh K, Yamamoto M, Hayes J D (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem, 278(24): 21592–21600

DOI PMID

83
Micheau O, Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 114(2): 181–190

DOI PMID

84
Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006). Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci, 249(1): 13–18

DOI PMID

85
Moscat J, Diaz-Meco M T (2011). Feedback on fat: p62-mTORC1-autophagy connections. Cell, 147(4): 724–727

DOI PMID

86
Moscat J, Diaz-Meco M T, Wooten M W (2007). Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci, 32(2): 95–100

DOI PMID

87
Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557

DOI PMID

88
Nagaoka U, Kim K, Jana N R, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004). Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem, 91(1): 57–68

DOI PMID

89
Najat D, Garner T, Hagen T, Shaw B, Sheppard P W, Falchetti A, Marini F, Brandi M L, Long J E, Cavey J R, Searle M S, Layfield R (2009). Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res, 24(4): 632–642

DOI PMID

90
Nakano T, Nakaso K, Nakashima K, Ohama E (2004). Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol, 107(4): 359–364

DOI PMID

91
Norman J M, Cohen G M, Bampton E T (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 6(8): 1042–1056

DOI PMID

92
Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377

DOI PMID

93
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145

DOI PMID

94
Parkhitko A, Myachina F, Morrison T A, Hindi K M, Auricchio N, Karbowniczek M, Wu J J, Finkel T, Kwiatkowski D J, Yu J J, Henske E P (2011). Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA, 108(30): 12455–12460

DOI PMID

95
Parkinson N, Ince P G, Smith M O, Highley R, Skibinski G, Andersen P M, Morrison K E, Pall H S, Hardiman O, Collinge J, Shaw P J, Fisher E M, and the MRC Proteomics in ALS Study, and the FReJA Consortium (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology, 67(6): 1074–1077

DOI PMID

96
Polak P, Cybulski N, Feige J N, Auwerx J, Rüegg M A, Hall M N (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab, 8(5): 399–410

DOI PMID

97
Puls A, Schmidt S, Grawe F, Stabel S (1997). Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA, 94(12): 6191–6196

DOI PMID

98
Quinn J M, Elliott J, Gillespie M T, Martin T J (1998). A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology, 139(10): 4424–4427

DOI PMID

99
Rabouille C, Levine T P, Peters J M, Warren G (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell, 82(6): 905–914

DOI PMID

100
Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom A L, Kemppainen R, Cox N, Zhu H, Wooten M C, Diaz-Meco M T, Moscat J, Wooten M W (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem, 106(1): 107–120

DOI PMID

101
Ravikumar B, Vacher C, Berger Z, Davies J E, Luo S, Oroz L G, Scaravilli F, Easton D F, Duden R, O’Kane C J, Rubinsztein D C (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 36(6): 585–595

DOI PMID

102
Rea S L, Walsh J P, Ward L, Magno A L, Ward B K, Shaw B, Layfield R, Kent G N, Xu J, Ratajczak T (2009). Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res, 24(7): 1216–1223

DOI PMID

103
Rea S L, Walsh J P, Ward L, Yip K, Ward B K, Kent G N, Steer J H, Xu J, Ratajczak T (2006). A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res, 21(7): 1136–1145

DOI PMID

104
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222

DOI PMID

105
Rusten T E, Simonsen A (2008). ESCRT functions in autophagy and associated disease. Cell Cycle, 7(9): 1166–1172

DOI PMID

106
Sanz L, Diaz-Meco M T, Nakano H, Moscat J (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J, 19(7): 1576–1586

DOI PMID

107
Sanz L, Sanchez P, Lallena M J, Diaz-Meco M T, Moscat J (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J, 18(11): 3044–3053

DOI PMID

108
Seibenhener M L, Babu J R, Geetha T, Wong H C, Krishna N R, Wooten M W (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol, 24(18): 8055–8068

DOI PMID

109
Seibenhener M L, Geetha T, Wooten M W (2007). Sequestosome 1/p62—more than just a scaffold. FEBS Lett, 581(2): 175–179

DOI PMID

110
Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, Leguern E, Duyckaerts C (2009). Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol, 118(4): 561–573

DOI PMID

111
Shi C S, Kehrl J H (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem, 278(17): 15429–15434

DOI PMID

112
Shin J (1998). P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res, 21(6): 629–633

DOI PMID

113
Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci, 121(16): 2685–2695

DOI PMID

114
Sundaram K, Shanmugarajan S, Rao D S, Reddy S V (2011). Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology, 152(11): 4180–4189

DOI PMID

115
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25(8): 795–800

DOI PMID

116
Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, Nukina N, Iwaki T, Fukumaki Y, Kira J I (2010). Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol, 119(3): 355–364

DOI PMID

117
Teitelbaum S L, Ross F P (2003). Genetic regulation of osteoclast development and function. Nat Rev Genet, 4(8): 638–649

DOI PMID

118
Um S H, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini P R, Kozma S C, Auwerx J, Thomas G (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 431(7005): 200–205

DOI PMID

119
Vadlamudi R K, Joung I, Strominger J L, Shin J (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem, 271(34): 20235–20237

DOI PMID

120
Van Antwerp D J, Martin S J, Verma I M, Green D R (1998). Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol, 8(3): 107–111

DOI PMID

121
Varelas P N, Bertorini T E, Kapaki E, Papageorgiou C T (1997). Paget’s disease of bone and motor neuron disease. Muscle Nerve, 20(5): 630

PMID

122
Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop D R, Harada T, Engel J D, Yamamoto M (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet, 35(3): 238–245

DOI PMID

123
Wang C, Deng L, Hong M, Akkaraju G R, Inoue J, Chen Z J (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844): 346–351

DOI PMID

124
Watts G D, Wymer J, Kovach M J, Mehta S G, Mumm S, Darvish D, Pestronk A, Whyte M P, Kimonis V E (2004). Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet, 36(4): 377–381

DOI PMID

125
Wilson M I, Gill D J, Perisic O, Quinn M T, Williams R L (2003). PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell, 12(1): 39–50

DOI PMID

126
Wooten M W, Geetha T, Babu J R, Seibenhener M L, Peng J, Cox N, Diaz-Meco M T, Moscat J (2008). Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem, 283(11): 6783–6789

DOI PMID

127
Wooten M W, Geetha T, Seibenhener M L, Babu J R, Diaz-Meco M T, Moscat J (2005). The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem, 280(42): 35625–35629

DOI PMID

128
Wooten M W, Seibenhener M L, Mamidipudi V, Diaz-Meco M T, Barker P A, Moscat J (2001). The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J Biol Chem, 276(11): 7709–7712

DOI PMID

129
Wu Y, Zhou B P (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer, 102(4): 639–644

DOI PMID

130
Xu J, Wu H F, Ang E S, Yip K, Woloszyn M, Zheng M H, Tan R X (2009). NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev, 20(1): 7–17

DOI PMID

131
Yang W L, Zhang X, Lin H K (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 29(32): 4493–4503

DOI PMID

132
Yue Z (2007). Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy, 3(2): 139–141

PMID

133
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol, 160(1): 255–263

DOI PMID

134
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A, 106(47): 19860–19865

PMID

135
Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem, 279(44): 45676–45684

DOI PMID

Outlines

/