REVIEW

The stomata frontline of plant interaction with the environment-perspectives from hormone regulation

  • Mengmeng ZHU 1 ,
  • Shaojun DAI 1,2 ,
  • Sixue CHEN , 1
Expand
  • 1. Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32610, USA
  • 2. Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China

Received date: 24 Oct 2011

Accepted date: 24 Nov 2011

Published date: 01 Apr 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions. On leaf surface, stomata formed by pairs of guard cells mediate gas exchange, water transpiration as well as function in response to abiotic and biotic stresses. Stomatal closure could be induced by drought, salt, pathogen and other adverse conditions. This constitutes an instant defense response to prevent further damage to plants. Abscisic acid (ABA) is a major plant hormone involved in stress responses. Stress-activated ABA synthesis causes stomatal closure and prevents opening to reduce water loss and cell dehydration. Key regulatory receptor complex and other important components in the ABA signaling pathway have been identified. However, our knowledge of ABA signal transduction in guard cells is far from complete. Jasmonates are a group of phytohormones generally known to be important for plant defense against insects and necrotrophic pathogens. The increased levels of methyl jasmonate (MeJA) induced by herbivory and pathogen invasion show a similar effect on stomatal movement associated with ROS production as ABA. Investigation of guard cell signaling networks involving the two important phytohormones is significant and exciting. Information about protein and metabolite components and how they interact in guard cells is lacking. Here we review recent advances on hormone signaling networks in guard cells and how the networks integrate environmental signals to plant physiological output.

Cite this article

Mengmeng ZHU , Shaojun DAI , Sixue CHEN . The stomata frontline of plant interaction with the environment-perspectives from hormone regulation[J]. Frontiers in Biology, 2012 , 7(2) : 96 -112 . DOI: 10.1007/s11515-012-1193-3

Acknowledgments

The research on guard cells was supported by grants from the US National Science Foundation (MCB 0818051) and the National Institute of Health (1S10RR025418-01) to S. Chen, and grants from the National Natural Science Foundation of China (Grant No. 31071194) and Funds for Distinguished Young Scientists of Heilongjiang Province, China (No. JC201011) to S. Dai.
1
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15(1): 63-78

DOI PMID

2
Acharya B R, Assmann S M (2009). Hormone interactions in stomatal function. Plant Mol Biol, 69(4): 451-462

DOI PMID

3
Adachi T, Pimentel D R, Heibeck T, Hou X, Lee Y J, Jiang B, Ido Y, Cohen R A (2004). S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem, 279(28): 29857-29862

DOI PMID

4
Allen G J, Chu S P, Schumacher K, Shimazaki C T, Vafeados D, Kemper A, Hawke S D, Tallman G, Tsien R Y, Harper J F, Chory J, Schroeder J I (2000). Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsisdet3 mutant. Science, 289(5488): 2338-2342

DOI PMID

5
Allen G J, Sanders D (1995). Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell, 7(9): 1473-1483

DOI PMID

6
Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt M R (1995). Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA, 92(21): 9520-9524

DOI PMID

7
Assmann S M (1993). Signal transduction in guard cells. Annu Rev Cell Biol, 9(1): 345-375

DOI PMID

8
Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci, 8(4): 151-153

DOI PMID

9
Bandurska H, Stroinski A, Kubis J (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant, 25(3): 279-285

DOI

10
Barford D (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci, 21(11): 407-412

DOI PMID

11
Barth C, Jander G (2006). Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J, 46(4): 549-562

DOI PMID

12
Bäumer N, Mäurer A, Krieglstein J, Klumpp S (2007). Expression of protein histidine phosphatase in Escherichia coli, purification, and determination of enzyme activity. Methods Mol Biol, 365: 247-260

PMID

13
Beligni M V, Lamattina L (2001). Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci, 6(11): 508-509

DOI PMID

14
Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan T M, Mueller M J, Xia Z Q, Zenk M H (1995). The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA, 92(10): 4099-4105

DOI PMID

15
Bright J, Desikan R, Hancock J T, Weir I S, Neill S J (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 45(1): 113-122

DOI PMID

16
Buchanan B B, Balmer Y (2005). Redox regulation: a broadening horizon. Annu Rev Plant Biol, 56(1): 187-220

DOI PMID

17
Burnett G, Kennedy E P (1954). The enzymatic phosphorylation of proteins. J Biol Chem, 211(2): 969-980

PMID

18
Camps M, Nichols A, Arkinstall S (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J, 14(1): 6-16

PMID

19
Chen J G (2008). Heterotrimeric G-protein signaling in Arabidopsis: Puzzling G-protein-coupled receptor. Plant Signal Behav, 3(12): 1042-1045

DOI PMID

20
Chen S, Harmon A C (2006). Advances in plant proteomics. Proteomics, 6(20): 5504-5516

DOI PMID

21
Chen Z, Gallie D R (2004). The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell, 16(5): 1143-1162

DOI PMID

22
Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15(8): 1833-1845

DOI PMID

23
Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 52: 223-239

24
Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud J B (2002). Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell, 14(5): 1133-1146

DOI PMID

25
Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 139(4): 1750-1761

DOI PMID

26
Cohen P, Cottrell G, Hill Venning C (1989). The protein phosphatase inhibitor okadaic acid potentiates the 5-HT induced suppression of a K current in the C1-neurone of helix-aspersa. J Physiol, 415: 33

27
Colcombet J, Lelièvre F, Thomine S, Barbier-Brygoo H, Frachisse J M (2005). Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot, 56(417): 1897-1903

DOI PMID

28
Cramer M D, Nagel O W, Lips S H, Lambers H (1995). Reduction, assimilation and transport of N in normal and gibberellin deficient tomato plants. Physiol Plant, 95(3): 347-354

DOI

29
Creelman R A, Mullet J E (1997). Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol, 48(1): 355-381

DOI PMID

30
Dat J F, Capelli N, Folzer H, Bourgeade P, Badot P M (2004). Sensing and signalling during plant flooding. Plant Physiol Biochem, 42(4): 273-282

DOI PMID

31
Delk N A, Johnson K A, Chowdhury N I, Braam J (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol, 139(1): 240-253

DOI PMID

32
Desikan R, Griffiths R, Hancock J, Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA, 99(25): 16314-16318

DOI PMID

33
Desikan R, Hancock J T, Bright J, Harrison J, Weir I, Hooley R, Neill S J (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol, 137(3): 831-834

DOI PMID

34
Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung M K, Meixner A J, Hooley R, Neill S J, Hancock J T, Harter K (2008). The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE, 3(6): e2491

DOI PMID

35
Dodd I C, Davies W J (2010). Hormones and the regulation of water balance. Plant Hormones. E3: 519-548

36
Evans N H (2003). Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol, 131(1): 8-11

DOI PMID

37
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci, 12(4): 169-176

DOI PMID

38
Finkelstein R R, Gibson S I (2002). ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol, 5(1): 26-32

DOI PMID

39
Foyer C H, Noctor G (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 11(4): 861-905

DOI PMID

40
Fujii H, Verslues P E, Zhu J K (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 19(2): 485-494

DOI PMID

41
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 9(4): 436-442

DOI PMID

42
Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA, 100(19): 11116-11121

DOI PMID

43
Gehring C, Irving H, McConchie R, Parish R (1997). Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann Bot (Lond), 80(4): 485-489

DOI

44
Geiger D, Maierhofer T, Al-Rasheid K A, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal, 4(173): ra32

DOI PMID

45
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid K A, Romeis T, Hedrich R (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 106(50): 21425-21430

DOI PMID

46
Germain H, Lachance D, Pelletier G, Fossdal C G, Solheim H, Séguin A (2011). The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. J Exp Bot,

DOI PMID

47
Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol, 46(12): 1902-1914

DOI PMID

48
Gosti F, Beaudoin N, Serizet C, Webb A A, Vartanian N, Giraudat J (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 11(10): 1897-1910

PMID

49
Gudesblat G E, Iusem N D, Morris P C (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol, 173(4): 713-721

DOI PMID

50
Guo J, Zeng Q, Emami M, Ellis B E, Chen J G (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE, 3(8): e2982

DOI PMID

51
Halford N G, Hey S J (2009). Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Biochem J, 419(2): 247-259

DOI PMID

52
Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 11(4): 192-198

DOI PMID

53
Hanks S K, Hunter T (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 9(8): 576-596

PMID

54
Harmon A C (2003). Calcium-regulated protein kinases of plants. Gravit Space Biol Bull, 16(2): 83-90

PMID

55
Haubrick L L, Assmann S M (2006). Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ, 29(3): 446-457

DOI PMID

56
Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1997). Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ, 20(1): 136-141

DOI

57
Hetherington A M, Woodward F I (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951): 901-908

DOI PMID

58
Hey S, Bacon A, Burnett E, Neill S (1997). Abscisic acid signal transduction in epidermal cells of Pisum sativum L. argenteum: Both dehydrin mRNA accumulation and stomatal responses require protein phosphorylation and dephosphorylation. Planta, 202(1): 85-92

DOI

59
Hornberg C, Weiler E (1984). High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature, 310(5975): 321-324

DOI

60
Huang D, Wu W, Abrams S R, Cutler A J (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot, 59(11): 2991-3007

DOI PMID

61
Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I (2010). Early abscisic acid signal transduction mechanisms: Newly discovered components and newly emerging questions. Genes Dev, 24(16): 1695-1708

DOI PMID

62
Husebye H, Chadchawan S, Winge P, Thangstad O P, Bones A M (2002). Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol, 128(4): 1180-1188

DOI PMID

63
Irving A J, Collingridge G L, Schofield J G (1992). L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium, 13(5): 293-301

DOI PMID

64
Islam M M, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan M S, Masuda C, Nakamura Y, Mori I C, Murata Y (2009). Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol, 50(6): 1171-1175

DOI PMID

65
Iyer L M, Koonin E V, Aravind L (2001). Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins, 43(2): 134-144

DOI PMID

66
Jackson M B (2002). Long-distance signaling from roots to shoots assessed: the flooding story. J Exp Bot, 53(367): 175-181

DOI PMID

67
Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis B E, Murata Y, Kwak J M (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 106(48): 20520-20525

DOI PMID

68
Johnston C A, Temple B R, Chen J G, Gao Y, Moriyama E N, Jones A M, Siderovski D P, Willard F S (2007). Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science, 318(5852): 914c

DOI PMID

69
Joo J H, Wang S, Chen J G, Jones A M, Fedoroff N V (2005). Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell, 17(3): 957-970

DOI PMID

70
Katsir L, Chung H S, Koo A J, Howe G A (2008). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol, 11(4): 428-435

DOI PMID

71
Kerk D, Bulgrien J, Smith D W, Barsam B, Veretnik S, Gribskov M (2002). The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol, 129(2): 908-925

DOI PMID

72
Khokon A R, Okuma E, Hossain M A, Munemasa S, Uraji M, Nakamura Y, Mori I C, Murata Y (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ, 34(3): 434-443

DOI PMID

73
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009). The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol, 150(3): 1394-1410

DOI PMID

74
Koornneef M, Hanhart C J, Hilhorst H W, Karssen C M (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol, 90(2): 463-469

DOI PMID

75
Kwak J M, Moon J H, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder J I (2002). Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell, 14(11): 2849-2861

DOI PMID

76
Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D, Schroeder J I (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 22(11): 2623-2633

DOI PMID

77
Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez A C, Moses T, Seo M, Kanno Y, Häkkinen S T, Van Montagu M C, Thevelein J M, Maaheimo H, Oksman-Caldentey K M, Rodriguez P L, Rischer H, Goossens A (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA, 108(14): 5891-5896

DOI PMID

78
Lee J S (1998). The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol, 41(2): 97-102

DOI

79
Lee S C, Lan W, Buchanan B B, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA, 106(50): 21419-21424

DOI PMID

80
Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3): 596-615

DOI PMID

81
Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264(5164): 1448-1452

DOI PMID

82
Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 49(1): 199-222

DOI PMID

83
Leung J, Merlot S, Giraudat J (1997). The ArabidopsisABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5): 759-771

PMID

84
Li J, Assmann S M (1996). An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell, 8(12): 2359-2368

DOI PMID

85
Li J, Wang X Q, Watson M B, Assmann S M (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 287(5451): 300-303

DOI PMID

86
Li S, Assmann S M, Albert R (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol, 4(10): e312

DOI PMID

87
Li W, Luan S, Schreiber S, Assmann S (1994). Evidence for protein phosphates 1 and phosphatase 2A regulation of K+ channels in 2 types of leaf cells. Plant Physiol, 106: 963-970

DOI PMID

88
Liechti R, Farmer E E (2002). The jasmonate pathway. Science, 296(5573): 1649-1650

DOI PMID

89
Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009). Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot, 60(11): 3221-3238

DOI PMID

90
Liu X, Yue Y, Li B, Nie Y, Li W, Wu W H, Ma L (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 315(5819): 1712-1716

DOI PMID

91
Lohse G, Hedrich R (1992). Characterization of the plasma membrane H+-ATPase from Vicia faba guard cells- modulation by extracellular factors and seasonal changes. Planta, 188(2): 206-214

DOI

92
Lorenzo O, Chico J M, Sánchez-Serrano J J, Solano R (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell, 16(7): 1938-1950

DOI PMID

93
Luan S (2003). Protein phosphatases in plants. Annu Rev Plant Biol, 54(1): 63-92

DOI PMID

94
Luan S, Li W, Rusnak F, Assmann S M, Schreiber S L (1993). Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci U S A, 15; 90(6):2202-2206

95
Ma S Y, Wu W H (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol, 65(4): 511-518

DOI PMID

96
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324(5930): 1064-1068

PMID

97
MacRobbie E A (1998). Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci, 353(1374): 1475-1488

DOI PMID

98
MacRobbie E A (2002). Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci USA, 99(18): 11963-11968

DOI PMID

99
Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J P, Aldon D (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J, 56(4): 575-589

DOI PMID

100
Manthe B, Schulz M, Schnabl H (1992). Effects of salicylic acid on growth and stomatal movements of Vicia faba L.evidence for salicylic acid metabolization. J Chem Ecol, 18(9): 1525-1539

DOI

101
Meinhard M, Grill E (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett, 508(3): 443-446

DOI PMID

102
Meinhard M, Rodriguez P L, Grill E (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta, 214(5): 775-782

DOI PMID

103
Melcher K, Ng L M, Zhou X E, Soon F F, Xu Y, Suino-Powell K M, Park S Y, Weiner J J, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson F C, Jensen D R, Yong E L, Volkman B F, Cutler S R, Zhu J K, Xu H E (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273): 602-608

DOI PMID

104
Melotto M, Underwood W, Koczan J, Nomura K, He S Y (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126(5): 969-980

DOI PMID

105
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 25(3): 295-303

DOI PMID

106
Merlot S, Mustilli A C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002). Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J, 30(5): 601-609

DOI PMID

107
Meyer K, Leube M P, Grill E (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264(5164): 1452-1455

DOI PMID

108
Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K S, Yamaguchi-Shinozaki K, Tanokura M (2009). Structural basis of abscisic acid signalling. Nature, 462(7273): 609-614

DOI PMID

109
Mori I C, Murata Y, Yang Y, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J M, Harper J F, Ecker J R, Kwak J M, Schroeder J I (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca (2+)-permeable channels and stomatal closure. PLoS Biol, 4(10): e327

DOI PMID

110
Mori I C, Muto S (1997). Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol, 113(3): 833-839

PMID

111
Mori I C, Pinontoan R, Kawano T, Muto S (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol, 42(12): 1383-1388

DOI PMID

112
Mundy J, Schneitz K (2002). Protein phosphorylation in and around signal transduction. Trends Plant Sci, 7(2): 54-55

DOI PMID

113
Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: Specific impairment of ion channel activation and second messenger production. Plant Physiol, 143(3): 1398-1407

DOI PMID

114
Murata Y, Pei Z M, Mori I C, Schroeder J (2001). Abscisic acid activation of plasma membrane Ca (2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 13(11): 2513-2523

PMID

115
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12): 3089-3099

DOI PMID

116
Neill S J, Desikan R, Clarke A, Hancock J T (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol, 128(1): 13-16

DOI PMID

117
Nemhauser J L, Hong F, Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126(3): 467-475

DOI PMID

118
Nishimura N, Sarkeshik A, Nito K, Park S Y, Wang A, Carvalho P C, Lee S, Caddell D F, Cutler S R, Chory J, Yates J R, Schroeder J I (2010). PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J, 61(2): 290-299

DOI PMID

119
Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J, 50(6): 935-949

DOI PMID

120
Outlaw W H Jr, De Vlieghere-He X (2001). Transpiration rate: An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 126(4): 1716-1724

DOI PMID

121
Pandey G K, Grant J J, Cheong Y H, Kim B G, Li G, Luan S (2008). Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 1(2): 238-248

DOI PMID

122
Pandey S, Nelson D C, Assmann S M (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell, 136(1): 136-148

DOI PMID

123
Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324(5930): 1068-1071

PMID

124
Parvathi K, Raghavendra A (1997). Both Rubisco and phosphoenolpyruvate carboxylase are beneficial for stomatal function in epidermal strips of Commelina benghalensis. Plant Sci, 124(2): 153-157

DOI

125
Pei Z M, Kuchitsu K, Ward J M, Schwarz M, Schroeder J I (1997). Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell, 9(3): 409-423

PMID

126
Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797): 731-734

DOI PMID

127
Pitzschke A, Forzani C, Hirt H (2006). Reactive oxygen species signaling in plants. Antioxid Redox Signal, 8(9-10): 1757-1764

DOI PMID

128
Razem F A, El-Kereamy A, Abrams S R, Hill R D (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature, 439(7074): 290-294

DOI PMID

129
Rodriguez P L, Leube M P, Grill E (1998). Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol, 38(5): 879-883

DOI PMID

130
Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia M P, Nicolas C, Lorenzo O, Rodriguez P L (2004). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J, 37(3): 354-369

DOI PMID

131
Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y (2008). Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol, 49(9): 1396-1401

DOI PMID

132
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S Y, Márquez J A, Cutler S R, Rodriguez P L (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J, 60(4): 575-588

DOI PMID

133
Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto D B, Uozumi N (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 424(3): 439-448

DOI PMID

134
Schmidt C, Schelle I, Liao Y J, Schroeder J I (1995). Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA, 92(21): 9535-9539

DOI PMID

135
Schroeder J I, Hedrich R (1989). Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci, 14(5): 187-192

DOI PMID

136
Schweighofer A, Hirt H, Meskiene I (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 9(5): 236-243

DOI PMID

137
Sethuraman M, McComb M E, Huang H, Huang S, Heibeck T, Costello C E, Cohen R A (2004). Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res, 3(6): 1228-1233

DOI PMID

138
Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J, Howe G A, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 468(7322): 400-405

DOI PMID

139
Shen Y Y, Wang X F, Wu F Q, Du S Y, Cao Z, Shang Y, Wang X L, Peng C C, Yu X C, Zhu S Y, Fan R C, Xu Y H, Zhang D P (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443(7113): 823-826

DOI PMID

140
Shimazaki K, Kinoshita T, Nishimura M (1992). Involvement of calmodulin and dalmodulin-dependent myosin light chain kinase in blue light-dependent H pumping by guard cell protoplasts from Vicia faba L. Plant Physiol, 99(4): 1416-1421

DOI PMID

141
Shinozaki K, Yamaguchi-Shinozaki K (2006). Gene networks involved in drought stress response and tolerance. J Exp Bot, 58(2): 221-227

DOI PMID

142
Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S (2010). The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE, 5(11): e13935

DOI PMID

143
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009). The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot, 60(5): 1439-1463

DOI PMID

144
Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt M R (2005). Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J, 43(4): 520-529

DOI PMID

145
Stone J M, Walker J C (1995). Plant protein kinase families and signal transduction. Plant Physiol, 108(2): 451-457

DOI PMID

146
Suhita D, Kolla V, Vavasseur A, Raghavendra A (2003). Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci, 164(4): 481-488

DOI

147
Suhita D, Raghavendra A S, Kwak J M, Vavasseur A (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol, 134(4): 1536-1545

DOI PMID

148
Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem, 275(18): 13175-13178

DOI PMID

149
Suzuki N, Koussevitzky S, Mittler R, Miller G (2011). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ: no

DOI PMID

150
Tähtiharju S, Palva T (2001). Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J, 26(4): 461-470

DOI PMID

151
Taiz L, Zeiger E (2006). Plant Physiology (4th ed). Sunderland: Sinauer Associates Inc

152
Taj G, Agarwal P, Grant M, Kumar A (2010). MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav, 5(11): 1370-1378

DOI PMID

153
Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006). gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ, 29(4): 619-631

DOI PMID

154
Thiel G, Blatt M (1994). Phosphatase antagonist okadaic acid inhibits steady state K+ currents in guard cells of Vicia faba. Plant J, 5(5): 727-733

DOI

155
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154): 661-665

DOI PMID

156
Tominaga M, Harada A, Kinoshita T, Shimazaki K (2010). Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol, 51(3): 408-421

DOI PMID

157
Tsuzuki T, Takahashi K, Inoue S, Okigaki Y, Tomiyama M, Hossain M A, Shimazaki K, Murata Y, Kinoshita T (2011). Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res, 124(4): 527-538

DOI PMID

158
Vahisalu T, Puzõrjova P, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang Y S, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62: 442-453

159
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F (2011). Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 62(2): 545-555

DOI PMID

160
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1): 44-84

DOI PMID

161
Vavasseur A, Raghavendra A S (2005). Guard cell metabolism and CO2 sensing. New Phytol, 165(3): 665-682

DOI PMID

162
Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez P L, Laurière C, Merlot S (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell, 21(10): 3170-3184

DOI PMID

163
Wang R S, Pandey S, Li S, Gookin T E, Zhao Z, Albert R, Assmann S M (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics, 12(1): 216

DOI PMID

164
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008). An update on abscisic acid signaling in plants and more.... Mol Plant, 1(2): 198-217

DOI PMID

165
West A H, Stock A M (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci, 26(6): 369-376

DOI PMID

166
Wilkinson S, Davies W J (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ, 25(2): 195-210

DOI PMID

167
Wu Y, Kuzma J, Maréchal E, Graeff R, Lee H C, Foster R, Chua N H (1997). Abscisic acid signaling through cyclic ADP-ribose in plants. Science, 278(5346): 2126-2130

DOI PMID

168
Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280(5366): 1091-1094

DOI PMID

169
Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder J I (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J, 30(8): 1645-1658

DOI PMID

170
Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 16(12): 1230-1236

DOI PMID

171
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2005). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem, 281(8): 5310-5318

DOI PMID

172
Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, Song C P (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol, 126(4): 1438-1448

DOI PMID

173
Zhao Z, Stanley B A, Zhang W, Assmann S M (2010). ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res, 9(4): 1637-1647

DOI PMID

174
Zhao Z, Zhang W, Stanley B A, Assmann S M (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell, 20(12): 3210-3226

DOI PMID

175
Zhu M, Dai S, McClung S, Yan X, Chen S (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics, 8(4): 752-766

DOI PMID

176
Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 19(10): 3019-3036

DOI PMID

Outlines

/