REVIEW

Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?

  • Aparna SHERLEKAR ,
  • Richa RIKHY
Expand
  • Indian Institute of Science, Education and Research, Biology, 301, Central Tower, Sai Trinity Bldg, Pashan, Pune 411021, India

Received date: 10 May 2011

Accepted date: 13 Jul 2011

Published date: 01 Feb 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

During embryo development in many metazoan animals, the first differentiated cell type to form is an epithelial cell. This epithelial layer is modified by developmental cues of body axes formation to give rise to various tissues. The cells that arise are mesenchymal in nature and are a source of other tissue types. This epithelial to mesenchymal transition is used for tissue type formation and also seen in diseases such as cancer. Here we discuss recent findings on the cellular architecture formation in the Drosophila embryo and how it affects the developmental program of body axes formation. In particular these studies suggest the presence of compartments around each nucleus in a common syncytium. Despite the absence of plasma membrane boundaries, each nucleus not only has its own endoplasmic reticulum and Golgi complex but also its own compartmentalized plasma membrane domain above it. This architecture is potentially essential for morphogen gradient restriction in the syncytial Drosophila embryo. We discuss various properties of the dorso-ventral and the antero-posterior morphogen gradients in the Drosophila syncytium, which are likely to depend on the syncytial architecture of the embryo.

Cite this article

Aparna SHERLEKAR , Richa RIKHY . Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?[J]. Frontiers in Biology, 2012 , 7(1) : 73 -82 . DOI: 10.1007/s11515-011-1160-4

1
Acloque H, Adams M S, Fishwick K, Bronner-fraser M, Nieto M A (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest, 119(6): 1438-1449

2
Afshar K, Stuart B, Wasserman S A (2000). Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development, 127: 1887-1897

3
Arnot C J, Gay N J, Gangloff M (2010). Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor. J Biol Chem, 285(25): 19502-19509

DOI

4
Baker J, Theurkauf W E, Schubiger G (1993). Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J Cell Biol, 122(1): 113-121

DOI

5
Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J, 7: 1749-1756

6
Bownes M (1975). A photographic study of development in the living embryo of Drosophila melanogaster. J Embryol Exp Morphol, 33: 789-801

7
Coppey M, Berezhkovskii A M, Kim Y, Boettiger A N, Shvartsman S Y (2007). Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev Biol, 312(2): 623-630

DOI

8
Coppey M, Boettiger A N, Berezhkovskii A M, Shvartsman S Y (2008). Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol, 18(12): 915-919

9
de Las Heras J M, Martinho R G, Lehmann R, Casanova J (2009). A functional antagonism between the pgc germline repressor and torso in the development of somatic cells. EMBO Rep, 10(9): 1059-1065

DOI

10
DeLotto R, DeLotto Y, Steward R, Lippincott-Schwartz J (2007). Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis. Development, 134(23): 4233-4241

DOI

11
Deng J, Wang W, Lu L J, Ma J (2010). A two-dimensional simulation model of the Bicoid Gradient in Drosophila. system, PLoS ONE, 5(4): e10275

12
Dilão R, Muraro D (2010). mRNA diffusion explains protein gradients in Drosophila early development. J Theor Biol, 264(3): 847-853

DOI

13
Dornan S, Jackson A P, Gay N J (1997). Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development. Mol Biol Cell, 8: 1391-1403

14
Driever W, Nüsslein-Volhard C (1988a). A gradient of bicoid protein in Drosophila embryos. Cell, 54(1): 83-93

DOI

15
Driever W, Nüsslein-Volhard C (1988b). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 54(1): 95-104

DOI

16
Field C M (2005). Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development, 132(12): 2849-2860

DOI

17
Field C M, Alberts B M (1995). Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol, 131(1): 165-178

DOI

18
Foe V E, Alberts B M (1983). Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci, 61: 31-70

19
Freeman M, Nüsslein-Volhard C, Glover D M (1986). The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell, 46(3): 457-468

DOI

20
Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J (2006). The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol, 173(2): 219-230

DOI

21
Gangloff M, Murali A, Xiong J, Arnot C J, Weber A N, Sandercock A M, Robinson C V, Sarisky R, Holzenburg A, Kao C, Gay N J (2008). Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Spätzle. J Biol Chem, 283(21): 14629-14635

DOI

22
Gillespie S K, Wasserman S A (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol, 14: 3559-3568

23
Gregor T, Tank D W, Wieschaus E F, Bialek W (2007). Probing the limits to positional information. Cell, 130(1): 153-164

24
Grimm O, Coppey M, Wieschaus E (2010). Modelling the Bicoid gradient. Development, 137(14): 2253-2264

DOI

25
Grimm O, Wieschaus E (2010). The Bicoid gradient is shaped independently of nuclei INTRODUCTION. Development, 2862(17): 2857-2862

DOI

26
Grosshans J, Wenzl C, Herz H M, Bartoszewski S, Schnorrer F, Vogt N, Schwarz H, Müller H A (2005). RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development, 132(5): 1009-1020

DOI

27
Hu Q, Milenkovic L, Jin H, Scott M P, Nachury M V, Spiliotis E T, Nelson W J (2010). A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science, 329(5990): 436-439

DOI

28
Huang A M, Rusch J, Levine M (1997). An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev, 11(15): 1963-1973

DOI

29
Huang H R, Chen Z J, Kunes S, Chang G D, Maniatis T (2010). Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc Natl Acad Sci U S A, 107(18): 8322-8327

30
Kanodia J S, Rikhy R, Kim Y, Lund V K, DeLotto R, Lippincott-Schwartz J, Shvartsman S Y (2009). Dynamics of the Dorsal morphogen gradient. Proc Natl Acad Sci USA, 106(51): 21707-21712

DOI

31
Karr T L, Alberts B M (1986). Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol, 102(4): 1494-1509

DOI

32
Kavousanakis M E, Kanodia J S, Kim Y, Kevrekidis I G, Shvartsman S Y (2010). A compartmental model for the bicoid gradient. Dev Biol, 345(1): 12-17

DOI

33
Keith F J, Gay N J (1990). The Drosophila membrane receptor Toll promote cellular adhesion function to. EMBO J, 9: 4299-4306

34
Kim S K, Shindo A, Park T J, Oh E C, Ghosh S, Gray R S, Lewis R A, Johnson C A, Attie-Bittach T, Katsanis N, Wallingford J B (2010). Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science, 329(5997): 1337-1340

DOI

35
Kim Y, Coppey M, Grossman R, Ajuria L, Jiménez G, Paroush Z, Shvartsman S Y (2010). MAPK substrate competition integrates patterning signals in the Drosophila embryo. Curr Biol, 20(5): 446-451

DOI

36
Kim Y K, Furic L, Desgroseillers L, Maquat L E, York N (2005). Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell, 120(2): 195-208

37
Lecuit T (2004). Junctions and vesicular trafficking during Drosophila cellularization. J Cell Sci, 117(16): 3427-3433

DOI

38
Lecuit T, Samanta R, Wieschaus E (2002). slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell, 2(4): 425-436

DOI

39
Lipshitz H D (2009). Follow the mRNA: a new model for Bicoid gradient formation. Nat Rev Mol Cell Biol, 10: 509-512

40
Lloyd T E, Atkinson R, Wu M N, Zhou Y, Pennetta G, Bellen H J (2002). Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell, 108(2): 261-269

DOI

41
Löhr U, Chung H R, Beller M, Jäckle H (2009). Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains. Proc Natl Acad Sci USA, 106(51): 21695-21700

DOI

42
Lund V K, DeLotto Y, DeLotto R (2010). Endocytosis is required for Toll signaling and shaping of the Dorsal/NF-κB morphogen gradient during Drosophila embryogenesis. Proc Natl Acad Sci USA, 107(42): 18028-18033

DOI

43
Mavrakis M, Rikhy R, Lippincott-Schwartz J (2009). Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell, 16(1): 93-104

DOI

44
Minden J S, Agard D (1989). Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J Cell Biol, 109(2): 505-516

DOI

45
Moussian B, Roth S (2005). Dorsoventral axis formation in the Drosophila embryo-shaping and transducing a morphogen gradient. Curr Biol, 15: 887-899

46
Papatsenko D (2005). Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo. Proc Natl Acad Sci USA, 102(14): 4966-4971

DOI

47
Postner M A, Wieschaus E F (1994). The nullo protein is a component of the actin-myosin network that mediates cellularization in Drosophila melanogaster embryos. J Cell Sci, 107 (Pt 7): 1863-1873

48
Raff J W, Glover D M (1989). Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell, 57(4): 611-619

DOI

49
Ratnaparkhi G S, Jia S, Courey A J (2006). Uncoupling dorsal-mediated activation from dorsal-mediated repression in the Drosophila embryo. Development, 4414(22): 4409-4414

DOI

50
Riggs B, Rothwell W, Mische S, Hickson G R X, Matheson J, Hays T S, Gould G W (2003). Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11. J Cell Biol, 163(1): 143-154

DOI

51
Roth S, Lynch J A (2009). Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol, 1(2): a001891

DOI

52
Royou A, Sullivan W (2002). Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J Cell Biol, 158(1): 127-137

DOI

53
Rusch J, Levine M (1994). Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev, 8(11): 1247-1257

DOI

54
Silverman-Gavrila R V, Hales K G, Wilde A (2008). Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol Biol Cell, 19(9): 3735-3744

DOI

55
Simpson L, Wieschaus E (1990). Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila. Development, 110: 851-863

56
Sisson J C, Field C, Ventura R, Royou A, Sullivan W (2000). Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol, 151(4): 905-918

DOI

57
Sokac A M, Wieschaus E (2008). Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization. Dev Cell, 14(5): 775-786

DOI

58
Sonnenblick B P (1948). Synchronous mitoses in Drosophila, their intensely rapid rate, and the sudden appearance of the nucleolus. Genetics, 33: 125

59
Spirov A, Fahmy K, Schneider M, Frei E, Noll M, Baumgartner S (2009). Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development, 614(4): 605-614

DOI

60
Sprenger F, Stevens L M, Nüsslein-Volhard C (1989). The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature, 338(6215): 478-483

DOI

61
Stevenson V, Hudson A, Cooley L, Theurkauf W E (2002). Arp2/3-dependent pseudocleavage furrow assembly in syncytial Drosophila embryos. Curr Biol, 12: 705-711

62
Takizawa P A, DeRisi J L, Wilhelm J E, Vale R D (2000). Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science, 290(5490): 341-344

DOI

63
Tipping M, Kim Y, Kyriakakis P, Tong M, Shvartsman S Y, Veraksa A (2010). b-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO J, 29(19): 3222-3235

DOI

64
Turner F R, Mahowald A P (1977). Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Dev Biol, 57(2): 403-416

DOI

65
Ventura G, Furriols M, Martín N, Barbosa V, Casanova J (2010). closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition. Dev Biol, 344(1): 224-232

DOI

66
von Dassow G, Schubiger G (1994). How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J Cell Biol, 127(6): 1637-1653

DOI

67
Weber A N R, Gangloff M, Moncrieffe M C, Hyvert Y, Imler J L, Gay N J (2007). Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand. J Biol Chem, 282(18): 13522-13531

DOI

68
Weil T T, Forrest K M, Gavis E R (2006). Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell, 11(2): 251-262

DOI

69
Weil T T, Parton R, Davis I, Gavis E R (2008). Report changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition. Curr Biol, 18(14): 1055-1061

DOI

Outlines

/