REVIEW

Androgen and estrogen receptors in placental physiology and dysfunction

  • Erin S McWhorter ,
  • Jennifer E Russ ,
  • Quinton A Winger ,
  • Gerrit J Bouma
Expand
  • Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University. 1683 Campus delivery, Fort Collins, CO 80523-1683, USA

Received date: 24 May 2018

Accepted date: 03 Aug 2018

Published date: 25 Oct 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: The placenta is recognized as an endocrine organ, largely due to its secretions of steroid hormones, including progesterone, androgens, and estrogens. Steroid hormones play an essential role in the progression of pregnancy, fetal development, and growth. Furthermore, steroids are necessary for establishment and maintenance of a normal pregnancy, preparing the endometrium for implantation, stimulating endometrial secretions, and regulating uterine blood flow, however the exact mechanism of sex steroid signaling through their receptors in placental function is unknown.

OBJECTIVE: In this review, we will provide an overview of the current knowledge on sex steroid receptors in normal placental development, as well as evidence of abnormal signaling associated with placental dysfunction.

METHODS: A systematic literature search was performed using the NCBI PubMed search engine, including the following key works: estrogen receptor, androgen receptor, placenta, placental development, cytotrophoblast, and differentiation.

RESULTS: Of the over 700 articles that were returned, 125 studies focused on estrogen and androgen receptors in human placenta development and function during normal and abnormal pregnancy, as well as in rodents and ruminants placentae.

CONCLUSION: Receptors for both estrogens and androgens have been localized within the mammalian placenta, but surprisingly little is known about their signaling in trophoblast cell differentiation and function. An emerging picture is developing in which estrogen receptors possibly play role in cytotrophoblast proliferation and extravillous trophoblast invasion, whereas androgen receptors are involved in syncytiotrophoblast differentiation and function.

Key words: Placenta; ESR; AR; preeclampsia; IUGR; PCOS

Cite this article

Erin S McWhorter , Jennifer E Russ , Quinton A Winger , Gerrit J Bouma . Androgen and estrogen receptors in placental physiology and dysfunction[J]. Frontiers in Biology, 2018 , 13(5) : 315 -326 . DOI: 10.1007/s11515-018-1517-z

1
Abbas A, Gupta S (2008). The role of histone deacetylases in prostate cancer. Epigenetics, 3(6): 300–309

2
Aberdeen G W, Baschat A A, Harman C R, Weiner C P, Langenberg P W, Pepe G J, Albrecht E D (2010). Uterine and fetal blood flow indexes and fetal growth assessment after chronic estrogen suppression in the second half of baboon pregnancy. Am J Physiol Heart Circ Physiol, 298(3): H881–H889

DOI PMID

3
Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005). Palmitoylation-dependent estrogen receptor α membrane localization: regulation by 17β-estradiol. Mol Biol Cell, 16(1): 231–237

DOI PMID

4
Açıkgöz S, Bayar U O, Can M, Güven B, Mungan G, Doğan S, Sümbüloğlu V (2013). Levels of oxidized LDL, estrogens, and progesterone in placenta tissues and serum paraoxonase activity in preeclampsia. Mediators Inflamm, 2013: 862982

DOI PMID

5
Albrecht E D, Bonagura T W, Burleigh D W, Enders A C, Aberdeen G W, Pepe G J (2006). Suppression of extravillous trophoblast invasion of uterine spiral arteries by estrogen during early baboon pregnancy. Placenta, 27(4-5): 483–490

DOI PMID

6
Albrecht E D, Pepe G J (2010). Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol, 54(2-3): 397–408

DOI PMID

7
Arnal J F, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J (2017). Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev, 97(3): 1045–1087

DOI PMID

8
Astwood E (1938). (1038). A six-hour assay for the quantitative determination of estrogen. Endocrinology, 23(1): 25–31

DOI

9
Atamer Y, Erden A C, Demir B, Koçyigit Y, Atamer A (2004). The relationship between plasma levels of leptin and androgen in healthy and preeclamptic pregnant women. Acta Obstet Gynecol Scand, 83(5): 425–430

DOI PMID

10
Bahri Khomami M, Boyle J A, Tay C T, Vanky E, Teede H J, Joham A E, Moran L J (2018). Polycystic ovary syndrome and adverse pregnancy outcomes: Current state of knowledge, challenges and potential implications for practice. Clin Endocrinol (Oxf), 88(6): 761–769; Epub ahead of print

DOI PMID

11
Bairagi S, Grazul-Bilska A T, Borowicz P P, Reyaz A, Valkov V, Reynolds L P (2018) Placental development during early pregnancy in sheep: Progesterone and estrogen receptor protein expression. Theriogenology, 114:1273–1284

12
Bangsbøll S, Qvist I, Lebech P E, Lewinsky M (1992). Testicular feminization syndrome and associated gonadal tumors in Denmark. Acta Obstet Gynecol Scand, 71(1): 63–66

DOI PMID

13
Bartnik P, Kosinska-Kaczynska K, Kacperczyk J, Ananicz W, Sierocińska A, Wielgos M, Szymusik I (2016). Twin chorionicity and the risk of hypertensive disorders: Gestational hypertension and pre-eclampsia. Twin Res Hum Genet, 10:1–6

14
Bazer F W, Burghardt R C, Johnson G A, Spencer T E, Wu G (2008). Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol, 8(3): 179–211

DOI PMID

15
Bazer F W, Spencer T E, Johnson G A, Burghardt R C, Wu G (2009). Comparative aspects of implantation. Reproduction, 138(2): 195–209

DOI PMID

16
Bellingham M, McKinnell C, Fowler P A, Amezaga M R, Zhang Z, Rhind S M, Cotinot C, Mandon-Pepin B, Evans N P, Sharpe R M (2012). Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. Int J Androl, 35(3): 317–329

DOI PMID

17
Benirschke K, Kaufmann P (2000). Pathology of the human placenta, 4th edition. New York: Springer Biol Reprod, 83 (2010), pp. 42–51

18
Björnström L, Sjöberg M (2005). Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol, 19(4): 833–842

DOI PMID

19
Bonagura T W, Pepe G J, Enders A C, Albrecht E D (2008). Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology, 149(10): 5078–5087

DOI PMID

20
Bousquet J, Lye S J, Challis J R G (1984). Comparison of leucine enkephalin and adrenocorticotrophin effects on adrenal function in fetal and adult sheep. J Reprod Fertil, 70(2): 499–506

DOI PMID

21
Brosens I, Robertson W B, Dixon H G (1967). The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol, 93(2): 569–579

DOI PMID

22
Brosens I A (1988). The uteroplacental vessels at term: the distribution and extent of physiological changes. Trophoblast Res, 3: 61–68

23
Brown T R (1995). Human androgen insensitivity syndrome. J Androl, 16(4): 299–303

PMID

24
Bukovsky A, Cekanova M, Caudle M R, Wimalasena J, Foster J S, Henley D C, Elder R F (2003). Expression and localization of estrogen receptor-alpha protein in normal and abnormal term placentae and stimulation of trophoblast differentiation by estradiol. Reprod Biol Endocrinol, 1:13–29

25
Bussolati B, Perkins J, Shams M, Rhaman M, Nijjar S, Qui Y, Kniss D, Dunk C, Yancopoulos G, Ahmed A (2000). Angiopoietin-1 and angiopoietin-2 are differentially expressed during placental development and stimulate trophoblast proliferation, migration and release of nitric oxide. J Soc Gynecol Investig, 7(Suppl): 158A

26
Carlsen S M, Romundstad P, Jacobsen G (2005). Early second-trimester maternal hyperandrogenemia and subsequent preeclampsia: a prospective study. Acta Obstet Gynecol Scand, 84(2): 117–121

DOI PMID

27
Carson D D, Bagchi I, Dey S K, Enders A C, Fazleabas A T, Lessey B A, Yoshinaga K (2000). Embryo implantation. Dev Biol, 223(2): 217–237

DOI PMID

28
Castracane V D, Stewart D R, Gimpel T, Overstreet J W, Lasley B L (1998). Maternal serum androgens in human pregnancy: early increases within the cycle of conception. Hum Reprod, 13(2): 460–464

DOI PMID

29
CDC Preterm birth fact sheet. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm. Last updated 11/12/2016

30
Chamouni A, Oury F (2014). Reciprocal interaction between bone and gonads. Arch Biochem Biophys, 561:147–153

DOI

31
Chang C W, Wakeland A K, Parast M M (2018). Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol, 236(1): R43–R56

DOI

32
Chardonnens D, Cameo P, Aubert M L, Pralong F P, Islami D, Campana A, Gaillard R C, Bischof P (1999). Modulation of human cytotrophoblastic leptin secretion by interleukin-1alpha and 17beta-oestradiol and its effect on HCG secretion. Mol Hum Reprod, 5(11): 1077–1082

DOI PMID

33
Cheng X, Xu S, Song C, He L, Lian X, Liu Y, Wei J, Pang L, Wang S (2016). Roles of ERα during mouse trophectoderm lineage differentiation: revealed by antagonist and agonist of ERα. Dev Growth Differ, 58(3): 327–338

DOI PMID

34
Cleys E R, Halleran J L, Enriquez V A, da Silveira J C, West R C, Winger Q A, Anthony R V, Bruemmer J E, Clay C M, Bouma G J (2015). Androgen receptor and histone lysine demethylases in ovine placenta. PLoS One, 10(2): e0117472

DOI PMID

35
Enders A C (1965). A comparative study of the fine structure of the trophoblast in several hemochorial placentas. Am J Anat, 116(1): 29–67

DOI PMID

36
Enders A C (1968). Fine structure of anchoring villi of the human placenta. Am J Anat, 122(3): 419–451

DOI PMID

37
Feng X, Zhou L, Mao X, Tong C, Chen X, Zhao D, Baker P N, Xia Y, Zhang H (2017). Association of a reduction of Gprotein coupled receptor 30 expression and the pathogenesis of preeclampsia. Mol Med Rep, 16(5): 5997–6003

DOI PMID

38
Fornes R, Maliqueo M, Hu M, Hadi L, Jimenez-Andrade J M, Ebefors K, Nyström J, Labrie F, Jansson T, Benrick A, Stener-Victorin E (2017). The effect of androgen excess on maternal metabolism, placental function and fetal growth in obese dams. Sci Rep, 7(1): 8066

DOI PMID

39
Fornes R, Hu M, Maliqueo M, Kokosar M, Benrick A, Carr D, Billig H, Jansson T, Manni L, Stener-Victorin E (2016). Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth. Mol Cell Endocrinol, 433:1–11

DOI

40
Friederici H H (1967). The early response of uterine capillaries to estrogen stimulation. An electron microscopic study. Lab Invest, 17(3): 322–333

PMID

41
Gambino Y P, Maymó J L, Pérez Pérez A, Calvo J C, Sánchez-Margalet V, Varone C L (2012). Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression. Placenta, 33(Suppl): S63–S70

DOI PMID

42
Gambino Y P, Maymó J L, Pérez Pérez A, Duenas J L, Sánchez-Margalet V, Calvo J C, Varone C L (2010). 17-Beta-estradiol enhances leptin expression in human placental cells through genomic and nongenomic actions. Biol Reprod, 83:1 42–51

43
Ghorashi V, Sheikhvatan M (2008). The relationship between serum concentration of free testosterone and pre-eclampsia. Endokrynol Pol, 59(5): 390–392

PMID

44
Gibb W, Lye S J, Challis J R G (2006). Parturition. Physiology of Reproduction. Academic Press. pp. 2925–2974

45
Goldenberg R L, Hauth J C, Andrews W W (2000). Intrauterine infection and preterm delivery. N Engl J Med, 342(20): 1500–1507

DOI PMID

46
Goldman-Wohl D S, Ariel I, Greenfield C, Lavy Y, Yagel S (2000). Tie-2 and angiopoietin-2 expression at the fetal-maternal interface: a receptor ligand model for vascular remodelling. Mol Hum Reprod, 6(1): 81–87

DOI PMID

47
Goto J, Fishman J (1977). Participation of a nonenzymatic transformation in the biosynthesis of estrogens from androgens. Science, 195(4273): 80–81

DOI PMID

48
Gözükara Y M, Aytan H, Ertunc D, Tok E C, Demirtürk F, Şahin Ş, Aytan P (2015). Role of first trimester total testosterone in prediction of subsequent gestational diabetes mellitus. J Obstet Gynaecol Res, 41(2):193–8

DOI

49
Guibourdenche J, Fournier T, Malassiné A, Evain-Brion D (2009). Development and hormonal functions of the human placenta. Folia Histochem Cytobiol, 47(5): S35–S40

PMID

50
Hagen A S, Orbus R J, Wilkening R B, Regnault T R, Anthony R V (2005). Placental expression of angiopoietin-1, angiopoietin-2 and tie-2 during placental development in an ovine model of placental insufficiency-fetal growth restriction. Pediatr Res, 58(6): 1228–1232

DOI PMID

51
Hall J E (2011). Guyton and Hall Textbook of Medical Physiology.12th ed. Philadelphia, PA: Saunders/Elsevier

52
Handelsman D J, Wartofsky L (2013). Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab, 98(10): 3971–3

DOI

53
Hertig A, Liere P, Chabbert-Buffet N, Fort J, Pianos A, Eychenne B, Cambourg A, Schumacher M, Berkane N, Lefevre G, Uzan S, Rondeau E, Rozenberg P, Rafestin-Oblin M E (2010). Steroid profiling in preeclamptic women: evidence for aromatase deficiency. Am J Obstet Gynecol, 203(5):477.e1–9

DOI

54
Hirano H, Imai Y, Ito H (2002). Spiral artery of placenta: development and pathology-immunohistochemical, microscopical, and electron-microscopic study. Kobe J Med Sci, 48(1-2): 13–23

PMID

55
Hoffmann B, Schuler G (2002). The bovine placenta; a source and target of steroid hormones: observations during the second half of gestation. Domest Anim Endocrinol, 23(1-2): 309–320

DOI PMID

56
Horie K, Takakura K, Imai K, Liao S, Mori T (1992). Immunohistochemical localization of androgen receptor in the human endometrium, decidua, placenta and pathological conditions of the endometrium. Hum Reprod, 7(10): 1461–6

57
Hsu T Y, Lan K C, Tsai C C, Ou C Y, Cheng B H, Tsai M Y, Kang H Y, Tung Y H, Wong Y H, Huang K E (2009). Expression of androgen receptor in human placentas from normal and preeclamptic pregnancies. Taiwan J Obstet Gynecol, 48(3): 262–267

DOI

58
Hu R, Jin H, Zhou S, Yang P, Li X (2007). Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line BeWo. Placenta, 28(5-6): 399–407

DOI PMID

59
Hughes I A, Davies J D, Bunch T I, Pasterski V, Mastroyannopoulou K, MacDougall J (2012). Androgen insensitivity syndrome. Lancet, 380(9851): 1419–1428

DOI PMID

60
Jackson M R, Carney E W, Lye S J, Knox Ritchie J W (1994). Localization of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta; 15: 341–353

61
Jahaninejad T, Ghasemi N, Kalantar S M, Sheikhha M H, Pashaiefar H (2013). StuI polymorphism on the androgen receptor gene is associated with recurrent spontaneous abortion. J Assist Reprod Genet, 30(3): 437–440

DOI

62
Kang H Y, Cho C L, Huang K L, Wang J C, Hu Y C, Lin H K, Chang C, Huang K E (2004). Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3–E1 osteoblasts. J Bone Miner Res, 19(7): 1181–90

63
Kaufmann P, Black S, Huppertz B (2003). Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod, 69(1): 1–7

DOI PMID

64
Kaufmann P, Bruns U, Leiser R, Luckhardt M, Winterhager E (1985). The fetal vascularisation of term human placental villi. II. Intermediate and terminal villi. Anat Embryol (Berl), 173(2): 203–214

DOI PMID

65
Kaufmann P, Castellucci M (1997). Extravillous trophoblast in the human placenta. Trophoblast Research., 10: 21–65

66
Kaufmann P, Mayhew T M, Charnock-Jones D S (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta, 25(2-3): 114–126

DOI PMID

67
Kay, H H, Nelson, D M, Wang Y (2011). The Placenta From Development to Disease. Blackwell Publishing Ltd36–52

68
Khatri P, Hoffmann B, Schuler G (2013). Androgen receptor is widely expressed in bovine placentomes and up-regulated during differentiation of bovine trophoblast giant cells. Placenta, 34(5): 416–423.

DOI

69
Klinga K, Bek E, Runnebaum B (1978). Maternal peripheral testosterone levels during the first half of pregnancy. Am J Obstet Gynecol, 131(1): 60–2.

70
Knabl J, Hiden U, Hüttenbrenner R, Riedel C, Hutter S, Kirn V, Günthner-Biller M, Desoye G, Kainer F, Jeschke U (2015). GDM alters expression of placental estrogen receptor α in a cell type and gender-specific manner. Reprod Sci, 22(12): 1488–1495

DOI PMID

71
Knobil E, Neill J D, eds. (1998) Placenta: Implantation and Developmental.Encyclopedia of Reproduction Academic Press: San Diego. Vol 3: 848–855

72
Koblizek T I, Weiss C, Yancopoulos G D, Deutsch U, Risau W (1998). Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol, 8(9): 529–532

DOI PMID

73
Koster M P, de Wilde M A, Veltman-Verhulst S M, Houben M L, Nikkels P G, van Rijn B B, Fauser B C (2015). Placental characteristics in women with polycystic ovary syndrome. Hum Reprod, 30(12): 2829–37

DOI

74
Kumar P, Kamat A, Mendelson C R (2009). Estrogen receptor alpha (ERalpha) mediates stimulatory effects of estrogen on aromatase (CYP19) gene expression in human placenta. Mol Endocrinol, 23(6): 784–793

DOI PMID

75
Lash G E, Warren A Y, Underwood S, Baker P N (2003). Vascular endothelial growth factor is a chemoattractant for trophoblast cells. Placenta, 24(5): 549–556

76
Leach L, Babawale M O, Anderson M, Lammiman M (2002). Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. J Vasc Res, 39(3): 246–259

DOI PMID

77
Lim J H, Kim S, Lee S W, Park S Y, Han J Y, Chung J H, Kim M Y, Yang J H, Ryu H M (2011). Association between genetic polymorphisms in androgen receptor gene and the risk of preeclampsia in Korean women. J Assist Reprod Genet, 28(1): 85–90

DOI PMID

78
Lodish H, Berk A, Kaiser C A, Krieger M, Scott M P, Bretscher A (2008). Molecular cell biology.6th ed. New York: W.H. Freeman and Company.

79
Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C, Compton D, McClain J, Aldrich T H, Papadopoulos N, Daly T J, Davis S, Sato T N, Yancopoulos G D (1997). Angiopoietin-2, a natural antagonist for TiE2 that disrupts in vivo angiogenesis. Science, 277: 55–60 15

80
Malassiné A, Cronier L (2002). Hormones and human trophoblast differentiation: a review. Endocrine, 19(1): 3–11

DOI PMID

81
Maliqueo M, Echiburú B, Crisosto N (2016). Sex Steroids Modulate Uterine-Placental Vasculature: Implications for Obstetrics and Neonatal Outcomes. Front Physiol, 7: 152

DOI

82
Mangelsdorf D J, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans R M (1995). The nuclear receptor superfamily: the second decade. Cell, 83(6): 835–839

DOI PMID

83
Maymo J L, Perez A P, Gambino Y, Calvo J C, Sanchez-Margalet V, Varone C L (2011). Review: leptin gene expression in the placenta–regulation of a key hormone in trophoblast proliferation and survival. Placenta, 32 Suppl 2: S146–153

84
McRobie D J, Korzekwa K R, Glover D D, Tracy T S (1997). The effects of diabetes on placental aromatase activity. J Steroid Biochem Mol Biol, 63(1-3): 147–153

DOI PMID

85
Meng C X, Cheng L N, Lalitkumar P G, Zhang L, Zhang H J, Gemzell-Danielsson K (2009) Expressions of steroid receptors and Ki67 in first-trimester decidua and chorionic villi exposed to levonorgestrel used for emergency contraception. Fertil Steril; 91:1420–1423. 28.

86
Meng Q, Shao L, Luo X, Mu Y, Xu W, Gao L, Xu H, Cui Y (2016). Expressions of VEGF-A and VEGFR-2 in placentae from GDM pregnancies. Reprod Biol Endocrinol, 14(1): 61

DOI

87
Metzler V M, de Brot S, Robinson R S, Jeyapalan J N, Rakha E, Walton T, Gardner D S, Lund E F, Whitchurch J, Haigh D, Lochray J M, Robinson B D, Allegrucci C, Fray R G, Persson J L, Ødum N, Miftakhova R R, Rizvanov A A, Hughes I A, Tadokoro-Cuccaro R, Heery D M, Rutland C S, Mongan N P (2017). Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development. Placenta, 56: 79–85

DOI

88
Migeon B R, Brown T R, Axelman J, Migeon C J (1981). Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proc Natl Acad Sci USA, 78(10): 6339–6343

DOI PMID

89
Molvarec A, Vér A, Fekete A, Rosta K, Derzbach L, Derzsy Z, Karádi I, Rigó J Jr (2007). Association between estrogen receptor alpha (ESR1) gene polymorphisms and severe preeclampsia. Hypertens Res, 30(3): 205–211

PMID

90
Morford J J, Wu S, Mauvais-Jarvis F (2018). The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol, 465: 92–102

DOI PMID

91
Morgan, T K (2016). Role of the placenta in preterm birth: A Review. Am J Perinatol, 33(3): 258–266

92
Mouse Genome Informatics.http://www.informatics.jax.org/reference/summary?id=j:46439

93
Niswender G D, Juengel J L, Silva P J, Rollyson M K, McIntush E W (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev, 80(1): 1–29

DOI PMID

94
O’Leary P, Boyne P, Flett P, Beilby J, James I (1991). Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem, 37(5): 667–672

PMID

95
O’Neil J S, Burow M E, Green A E, McLachlan J A, Henson M C (2001). Effects of estrogen on leptin gene promoter activation in MCF-7 breast cancer and JEG-3 choriocarcinoma cells: selective regulation via estrogen receptors alpha and beta. Mol Cell Endocrinol, 176(1-2): 67–75

DOI PMID

96
Padmanabhan V, Veiga-Lopez A (2014). Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci, 92(8): 3199–3210

DOI PMID

97
Park M N, Park K H, Lee J E, Shin Y Y, An S M, Kang S S, Cho W S, An B S, Kim S C (2018). The expression and activation of sex steroid receptors in the preeclamptic placenta. Int J Mol Med, 41(5): 2943–2951

DOI PMID

98
Park S Y, Kim Y J, Gao A C, Mohler J L, Onate S A, Hidalgo A A, Ip C, Park E M, Yoon S Y, Park Y M (2006). Hypoxia increases androgen receptor activity in prostate cancer cells. Cancer Res, 66(10): 5121–5129

DOI PMID

99
Pawar S, Laws M J, Bagchi I C, Bagchi M K (2015). Uterine epithelial estrogen receptor- controls decidualization via a paracrine mechanism. Mol Endocrinol, 29(9): 1362–74

DOI

100
Pi M, Chen L, Huang M Z, Zhu W, Ringhofer B, Luo J, Christenson L, Li B, Zhang J, Jackson P D, Faber P, Brunden K R, Harrington J J, Quarles L D (2008). GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE, 3(12): e3858

101
Pi M, Parrill A L, Quarles L D J (2010). GPRC6A mediates the non-genomic effects of steroids. Biol Chem, 285(51): 39953–64

DOI

102
Pi M, Wu Y, Quarles L D (2011). GPRC6A mediates responses to osteocalcin in -cells in vitro and pancreas in vivo. J Bone Miner Res, 26(7): 1680–1683

DOI

103
Pijnenborg R, Robertson W, Brosens I, Dixon G (1981). Trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta, 32(Suppl. 2): S146–S153

104
Poidatz D, Dos Santos E, Duval F, Moindjie H, Serazin V, Vialard F, De Mazancourt P, Dieudon M Nné (2015). Involvement of estrogen-related receptor- and mitochondrial content in intrauterine growthrestriction and preeclampsia. Fertil Steril,104(2): 483–490

DOI

105
Quigley C A, De Bellis A, Marschke K B, el-Awady M K, Wilson E M, French F S (1995). Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev, 16(3): 271–321

PMID

106
Ramathal C Y, Bagchi I C, Taylor R N, Bagchi M K (2010). Endometrial decidualization: of mice and men. Semin Reprod Med, 28(1): 17–26

DOI PMID

107
Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher S J (2004). Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest, 114(6): 744–5

108
Regnault T R, Galan H L, Parker T A, Anthony R V (2002) Placental development in normal and compromised pregnancies– a review. Placenta, S119–129

109
Reynolds L P, Borowicz P P, Vonnahme K A, Johnson M L, Grazul-Bilska A T, Redmer D A, Caton J S (2005). Placental angiogenesis in sheep models of compromised pregnancy. J Physiol, 565(Pt 1): 43–58

DOI PMID

110
Reynolds L P, Haring J S, Johnson M L, Ashley R L, Redmer D A, Borowicz P P, Grazul-Bilska A T (2015). Placental development during early pregnancy in sheep: estrogen and progesterone receptor messenger RNA expression in pregnancies derived from in vivo-produced and in vitro-produced embryos. Domest Anim Endocrinol, 53: 60–69

111
Rhind S M, Kyle C E, Kerr C, Osprey M, Zhang Z L (2011). Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. Sci Total Environ, 409(19): 3850–3856

DOI PMID

112
Sathishkumar K, Elkins R, Chinnathambi V, Gao H, Hankins G D V, Yallampalli C (2011). Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport. Reprod Biol Endocrinol, 9(1): 110–122

DOI PMID

113
Schiessl B, Mylonas I, Kuhn C, Kunze S, Schulze S, Friese K, Jeschke U (2006). Expression of estrogen receptor-alpha, estrogen receptor-beta and placental endothelial and inducible NO synthase in intrauterine growth-restricted and normal placentals. Arch Med Res, 37(8): 967–975

DOI PMID

114
Schuler G, Greven H, Kowalewski MP, Döring B, Ozalp GR, Hoffmann B (2008). Placental steroids in cattle: hormones, placental growth factors or by-products of trophoblast giant cell differentiation? Exp Clin Endocrinol Diabetes,116(7): 429–436

DOI

115
Schuler G, Teichmann U, Taubert A, Failing K, Hoffmann B (2002). Estrogen receptor beta (ERbeta) is expressed differently from ERalpha in bovine placentomes. Exp Clin Endocrinol Diabetes, 113(2): 107–114

116
Schuler G, Wirth C, Teichmann U, Failing K, Leiser R, Thole H, Hoffmann B (2002). Occurrence of estrogen receptor alpha in bovine placentomes throughout mid and late gestation and at parturition. Biol Reprod, 66(4): 976–982

117
Seabrook J, Cantlon J, Cooney A, McWhorter E, Fromme B, Bouma G, Anthony R, Winger Q (2013). Role of LIN28A in mouse and human trophoblast cell differentiation. Biol Reprod, 89(4): 95, 1–13

118
Seki K, Makimura N, Mitsui C, Hirata J, Nagata I(1991). Calcium-regulating hormones and osteocalcin levels during pregnancy: a longitudinal study. Am J Obstet Gynecol, 164(5 Pt 1): 1248–1252

119
Serin I S, Kula M, Başbuğ M, Unlühizarci K, Güçer S, Tayyar M (2001). Androgen levels of preeclamptic patients in the third trimester of pregnancy and six weeks after delivery. Acta Obstet Gynecol Scand, 80(11): 1009–1013

DOI PMID

120
Sharkey A M, Charnock-Jones D S, Boocock C A, Brown K D, Smith S K (1993). Expression of mRNA for vascular endothelial growth factor in human placenta. J Reprod Fertil, 99(2): 609–615

DOI PMID

121
Shiau A K, Barstad D, Loria P M, Cheng L, Kushner P J, Agard D A, Greene G L (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95(7): 927–937

DOI PMID

122
Sibai B M, Ewell M, Levine R J, Klebanoff M A, Esterlitz J, Catalano P M, Goldenberg R L, Joffe G, and the The Calcium for Preeclampsia Prevention (CPEP) Study Group (1997). Risk factors associated with preeclampsia in healthy nulliparous women. Am J Obstet Gynecol, 177(5): 1003–1010

DOI PMID

123
Sir-Petermann T, Maliqueo M, Angel B, Lara H E, Pérez-Bravo F, Recabarren S E (2002). Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod, 17(10): 2573–2579

124
Solomon S (1994). The placenta as an endocrine organ: steroids. In: Knobil E, Neil J D (Eds). Physiology of Reproduction, vol. II, second ed. Raven Press, New York, 863–873

125
Srichomkwun P, Houngngam N, Pasatrat S, Tharavanij T, Wattanachanya L, Khovidhunkit W (2015). Undercarboxylated osteocalcin is associated with insulin resistance, but not adiponectin, during pregnancy. Endocrine, (Dec): 26

PMID

126
Strauss J F 3rd, Martinez F, Kiriakidou M (1996). Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod, 54(2): 303–311

DOI PMID

127
Suri C, Jones P F, Patan S, Bartunkova S, Maisonpierre P C, Davis S, Sato T N, Yancopoulos G D (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 87(7): 1171–1180

DOI PMID

128
Thompson E A Jr, Siiteri P K (1974). The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem, 249(17): 5373–5378

PMID

129
Thompson E A Jr, Siiteri P K (1974). Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem, 249(17): 5364–5372

PMID

130
Thoumsin H J, Alsat E, Cedard L (1982). In vitro aromatization of androgens into estrogens in placental insufficiency. Gynecol Obstet Invest, 13(1): 37–43

DOI PMID

131
Tong C, Feng X, Chen J, Qi X, Zhou L, Shi S, Kc K, Stanley J L, Baker P N, Zhang H (2016). G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J Hypertens, 34(4): 710–718

DOI PMID

132
Uzelac P S, Li X, Lin J, Neese L D, Lin L, Nakajima S T, Bohler H, Lei Z (2010). Dysregulation of leptin and testosterone production and their receptor expression in the human placenta with gestational diabetes mellitus. Placenta, 31(7): 581–588

DOI

133
Wan J, Hu Z, Aeng K, Yin Y, Zhao M, Chen M, Chen Q (2017). The reduction in circulating levels of estrogen and progesterone in women with preeclampsia. Pregnancy Hypertens, 11: 18–25

DOI

134
Wang C, Liu Y, Cao J M (2014). G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. Int J Mol Sci, 15(9): 15412–15425

DOI

135
Wooding F B (1984). Role of binucleate cells in fetomaternal cell fusion at implantation in the sheep. Am J Anat, 170(2): 233–250

DOI PMID

136
Wooding F B P (1992). Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta, 13(2): 101–113

DOI PMID

137
Wooding F B P, Morgan G, Monaghan S, Hamon M, Heap R B (1996). Functional specialization in the ruminant placenta: evidence for two populations of fetal binucleate cells of different selective synthetic capacity. Placenta, 17(1): 75–86

DOI PMID

138
Xu J, Li M, Zhang L, Xiong H, Lai L, Guo M, Zong T, Zhang D, Yang B, Wu L, Tang M, Kuang H, Kuang H (2015). Expression and regulation of androgen receptor in the mouse uterus during early pregnancy and decidualization. Mol Reprod Dev, 82(11): 898–906

DOI PMID

139
Zachariah P K, Juchau M R (1977). Inhibition of human placental mixed-function oxidations with carbon monoxide: reversal with monochromatic light. J Steroid Biochem, 8(3): 221–228

DOI PMID

140
Zhang E G, Smith S K, Baker P N, Charnock-Jones D S (2001). The regulation and localization of angiopoietin-1, -2, and their receptor Tie2 in normal and pathologic human placentae. Mol Med, 7(9): 624–635

PMID

141
Zhang J, Bai H, Liu X, Fan P, Liu R, Huang Y, Wang X, He G, Liu Y, Liu B (2009). Genotype distribution of estrogen receptor alpha polymorphisms in pregnant women from healthy and preeclampsia populations and its relation to blood pressure levels. Clin Chem Lab Med, 47(4): 391–397

DOI PMID

142
Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, Alitalo K, Damsky C, Fisher S J (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol, 160(4): 1405–1423

DOI PMID

Outlines

/