REVIEW

An overview of pyrethroid insecticides

  • Anudurga Gajendiran ,
  • Jayanthi Abraham
Expand
  • Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India

Received date: 27 Jun 2017

Accepted date: 28 Mar 2018

Published date: 28 May 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: Pesticides are used to control various pests of agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistence. Pyrethroids are synthetic derivates of pyrethrins, which are natural organic insecticides procured from the flowers of Chrysanthemum cinerariaefolium and C. coccineum. Pyrethroids are classified into two groups—class I and class II—based on their toxicity and physical properties. These pyrethroids are now used in many synthetic insecticides and are highly specific against insects; they are generally used against mosquitoes. The prominent site of insecticidal action of pyrethroids is the voltage-sensitive sodium channels.

METHODS and RESULTS: Pyrethroids are found to be stable, and they persist in the environment for a long period. This article provides an overview of the different classes, structure, and insecticidal properties of pyrethroid. Furthermore, the toxicity of pyrethroids is also discussed with emphasis on bioremediation to alleviate pollution.

CONCLUSIONS: The article focuses on various microorganisms used in the degradation of pyrethroids, the molecular basis of degradation, and the role of carboxylesterase enzymes and genes in the detoxification of pyrethroid.

Cite this article

Anudurga Gajendiran , Jayanthi Abraham . An overview of pyrethroid insecticides[J]. Frontiers in Biology, 2018 , 13(2) : 79 -90 . DOI: 10.1007/s11515-018-1489-z

Acknowledgments

The authors are grateful to the Management, VIT University, Vellore, Tamil Nadu.

Conflict of interest

There is no conflict of interest to declare.
1
Abraham J, Silambarasan S (2014). Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. Pestic Biochem Physiol, 116: 24–31

DOI PMID

2
Abraham J, Silambarasan S (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic Biochem Physiol, 126: 13–21

DOI PMID

3
Agency for Toxic Substances and Disease Registry (2003). Toxicological Profile for Pyrethrins and Pyrethroids. US Department of Health and Human Services, pp: 238.

4
Ali H Y,Aboul-Enein (2004). Chiral Pollutants. John Wiley and Sons, Chichester, UK

5
Bloomquist J R (1993a). Neuroreceptor mechanisms in pyrethroid mode of action and resistance. Rev Pestic Toxic, 2:184–230

6
Bloomquist J R (1996). Ion channels as targets for insecticides. Annu Rev Entomol, 41(1): 163–190

DOI PMID

7
Bryant R, Bite M G (2003). Global Insecticide Directory, 3rd ed. Orpington, Kent UK Agranova

8
Casida J E, Quistad G B (1998). Golden age of insecticide research: past, present, or future? Annu Rev Entomol, 43(1): 1–16

DOI PMID

9
Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-ul-Haq M, Han H (2011b). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater, 187(1-3): 433–440

DOI PMID

10
Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol, 90(4): 1471–1483

DOI PMID

11
Chen S, Lin Q, Xiao Y, Deng Y, Chang C, Zhong G, Hu M, Zhang L H (2013). Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS One, 8(9): e75450

DOI PMID

12
Chen S, Yang L, Hu M, Liu J (2011c). Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol, 90(2): 755–767

DOI PMID

13
Fishel F M (2005). Pesticide Toxicity Profile: Synthetic Pyrethroid Pesticides. University of Florida, Institute of Food and Agricultural Sciences

14
Gan J, Lee S J, Liu W P, Haver D L, Kabashina J N (2005). Effects On Non-Target Organisms In Terrestrial And Aquatic Environments. In: Leahey JP (Ed.) The Pyrethroid Insecticides, Taylor and Francis, London, UK

15
Garey J, Wolff M S (1998). Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem Biophys Res Commun, 251(3): 855–859

DOI PMID

16
Glomot R (1982). Toxicity of deltamethrin to higher vertebrates, Deltamethrin (Monograph). Roussel-Uclaf Research Centre, France, 4: 109–136

17
Gosselin R E (1984). Clinic Toxicological of Commercial Products, Williams and Wilkins, Baltimore, MD, USA

18
Grant R J, Daniell T J, Betts W B (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol, 92(3): 534–540

DOI PMID

19
Guo P, Wang B Z, Hang B J, Li L, Ali S W, He J, Li S P (2009). Pyrethroid degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeter. Biodegr, 63(8): 1107–1112

DOI

20
Halden R U, Tepp S M, Halden B G, Dwyer D F (1999). Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol, 65(8): 3354–3359

PMID

21
Hosokawa M (2008). Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 13(2): 412–431

DOI PMID

22
Kasai S (2004). Role of cytochrome P450 in mechanism of pyrethroid resistance. J Pestic Sci, 29(3): 220–221

DOI

23
Katsuda Y (1999). Development of and future prospects for pyrethroid chemistry. Pestic Sci, 55(8): 775–782

DOI

24
Khambay B P S (2002). Pyrethroid insecticides. Pest Outlook, 13 (2) :49-54

25
Kumar A, Sharma B, Pandey R S (2008). Cypermethrin and lambda-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem, 34(4): 331–338

DOI PMID

26
Kurihara N, Mayamoto J (1998). Chirality in Agrochemicals, John Wiley and Sons, Chichester, UK

27
Laskowski D A (2002). Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol, 174: 49–170

DOI PMID

28
Lawrence L J, Casida J E (1982). Pyrethroid toxicology: mouse intracerebral structure–toxicity relationships. Pestic Biochem Physiol, 18(1): 9–14

DOI

29
Lee S, Gan J, Kim J S, Kabashima J N, Crowley D E (2004). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem, 23(1): 1–6

DOI PMID

30
Lee S H, Smith T J, Knipple D C, Soderlund D M (1999). Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol, 29(2): 185–194

DOI PMID

31
Legath J, Neuschl J, Kacmar P, Poracova J, Dudrikova E, Mlynarcikova H, Kovac G, Javorsky P (1992). Clinical signs and mechanism of supermethrin intoxication in sheep. Vet Hum Toxicol, 34(5): 453–455

PMID

32
Li G, Wang K, Liu Y H (2008). Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact, 7(1): 38

DOI PMID

33
Liang W Q, Wang Z Y, Li H, Wu P C, Hu J M, Luo N, Cao L X, Liu Y H (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem, 53(19): 7415–7420

DOI PMID

34
Liu W, Gan J, Schlenk D, Jury W A (2005). Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA, 102(3): 701–706

DOI PMID

35
Lutnicka H, Bogacka T, Wolska L (1999). Degradation of pyrethroids in an aquatic ecosystem model. Water Res, 33(16): 3441–3446

DOI

36
Maloney S E, Maule A, Smith A R W (1988). Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol, 54(11): 2874–2876

PMID

37
Maloney S E, Maule A, Smith A R W (1993). Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl Environ Microbiol, 59(7): 2007–2013

PMID

38
Mueller-Beilsehmidt D (1990). Toxicology and Environmental fate of synthetic pyrethroids. J Pestic Reform, 10(3): 32–37

39
Narahashi T (1992). Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci, 13(6): 236–241

PMID

40
Narahashi T (1996). Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol, 79(1): 1–14

DOI PMID

41
Naumann K (1998). Research into fluorinated pyrethroid alcohols: an episode in the history of pyrethroid discovery. Pestic Sci, 52(1): 3–20

DOI

42
Ross M K, Borazjani A, Edwards C C, Potter P M (2006). Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol, 71(5): 657–669

DOI PMID

43
Ruan Z, Zhai Y, Song J, Shi Y, Li K, Zhao B, Yan Y (2013). Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One, 8(10): e77329

DOI PMID

44
Saha S, Kaviraj A (2008). Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bull Environ Contam Toxicol, 80(1): 49–52

DOI PMID

45
Saikia N, Gopal M (2004). Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem, 52(5): 1220–1223

DOI PMID

46
Sakata S, Mikami N, Yamada H (1992). Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci, 17(3): 181–189

DOI

47
Shukla Y, Yadav A, Arora A (2002). Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett, 182(1): 33–41

DOI PMID

48
Soderlun D M, Lee S H (2001). Point mutations in homology domain II modify the sensitivity of rat Nav1.8 sodium channels to the pyrethroid insecticide cismethrin. Neurotoxicology, 22(6): 755–765

DOI PMID

49
Soderlund D M (1997). Molecular mechanisms of insecticide resistance. In: Sjut, V. (Ed.), Molecular Mechanisms of Resistance to Agrochemicals. Springer, Berlin 21–56

50
Soderlund D M, Bloomquist J R (1989). Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol, 34(1): 77–96

DOI PMID

51
Soderlund D M, Clark J M, Sheets L P, Mullin L S, Piccirillo V J, Sargent D, Stevens J T, Weiner M L (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1): 3–59

DOI PMID

52
Soderlund D M, Knipple D C (1999). Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Ann Entomol Soc Am, 92(6): 909–915

DOI

53
Sogorb M A, Vilanova E (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett, 128(1-3): 215–228

DOI PMID

54
Stok J E, Huang H, Jones P D, Wheelock C E, Morisseau C, Hammock B D (2004). Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes. J Biol Chem, 279(28): 29863–29869

DOI PMID

55
Tallur P N, Megadi V B, Ninnekar H Z (2008). Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation, 19(1): 77–82

DOI PMID

56
Valentine W M (1990). Toxicology of selected pesticides, drugs, and chemicals. Pyrethrin and pyrethroid insecticides. Vet Clin North Am Small Anim Pract, 20(2): 375–382

DOI PMID

57
Valles S M, Dong K, Brenner R J (2000). Mechanism responsible for cypermethrin resistance in a strain of German cockroach germanica. Pestic Biochem Physiol, 66(3): 195–205

DOI

58
Vijverberg H P M, van den Bercken J (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol, 21(2): 105–126

DOI PMID

59
Wang B Z, Guo P, Hang B J, Li L, He J, Li S P (2009). Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol, 75(17): 5496–5500

DOI PMID

60
WHO (1989). Task Group on Environmental Health Criteria for Cypermethrin. Environmental Health Criteria 82. Geneva,WHO

61
WHO (1990). Permethrin. In: Environmental Health Criteria, vol. 94. WHO, Geneva

62
Wu P C, Liu Y H, Wang Z Y, Zhang X Y, Li H, Liang W Q, Luo N, Hu J M, Lu J Q, Luan T G, Cao L X (2006). Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem, 54(3): 836–842

DOI PMID

63
Xu Y X, Sun J Q, Li X H, Li S P, Chen Y (2007). [Study on cooperating degradation of cypermethrin and 3-phenoxybenzoic acid by two bacteria strains]. Wei Sheng Wu Xue Bao, 47(5): 834–837

PMID

64
Yang Z H, Mishimura M, Nishimura K, Kuroda S, Fujita T (1987). Quantitative structure–activity studies of pyrethroids. Ch.12: physicochemical substituent effects of meta-phenoxybenzyl disubstituted acetates on insecticidal activity. Pestic Biochem Physiol, 29(3): 217–232

DOI

65
Yu F B, Shan S D, Luo L P, Guan L B, Qin H (2013). Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B, 48(3): 198–207

DOI PMID

66
Yu Y, Fan D (2003). Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol, 70(2): 367–371

DOI PMID

67
Zerba E N (1999). Susceptibility and resistance to insecticides of Chagas disease vectors. Medicina (B Aires), 59(Suppl 2): 41–46

PMID

68
Zhai Y, Li K, Song J, Shi Y, Yan Y (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater, 221-222: 206–212

DOI PMID

69
Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol, 101(10): 3423–3429

DOI PMID

Outlines

/