REVIEW

Advances in plant cell type-specific genome-wide studies of gene expression

  • Ying WANG 1 ,
  • Yuling JIAO , 2
Expand
  • 1. Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
  • 2. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Received date: 30 Jan 2011

Accepted date: 10 Mar 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Cell is the functional unit of life. To study the complex interactions of systems of biological molecules, it is crucial to dissect these molecules at the cell level. In recent years, major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level. Approaches based on the isolation of cells, polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species. These cell-level data sets revealed previously unrecognized cellular properties, such as cell-specific gene expression modules and hormone response centers, and should serve as essential resources for functional genomic analyses. Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.

Key words: transcriptome; cell type; plant

Cite this article

Ying WANG , Yuling JIAO . Advances in plant cell type-specific genome-wide studies of gene expression[J]. Frontiers in Biology, 2011 , 6(5) : 384 -389 . DOI: 10.1007/s11515-011-1141-7

Acknowledgments

We thank EM Meyerowitz for his continuous support. We apologize to those authors for not being able to directly cite their work due to space constraints. YJ is supported in part by the State Key Laboratory of Plant Genomics, and by the ‘100 Talents Project’ of Chinese Academy of Sciences.
1
Birnbaum K, Shasha D E, Wang J Y, Jung J W, Lambert G M, Galbraith D W, Benfey P N (2003). A gene expression map of the Arabidopsis root. Science, 302(5652): 1956–1960

DOI PMID

2
Brady S M, Orlando D A, Lee J Y, Wang J Y, Koch J, Dinneny J R, Mace D, Ohler U, Benfey P N (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, 318(5851): 801–806

DOI PMID

3
Brooks L 3rd, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire R J, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans M C, Schnable P S, Nettleton D, Scanlon M J (2009). Microdissection of shoot meristem functional domains. PLoS Genet, 5(5): e1000476

DOI PMID

4
Cai S, Lashbrook C C (2008). Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol, 146(3): 1305–1321

DOI PMID

5
Casson S, Spencer M, Walker K, Lindsey K (2005). Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J, 42(1): 111–123

DOI PMID

6
Cho Y, Fernandes J, Kim SH, Walbot V (2002). Gene-expression profile comparisons distinguish seven organs of maize. Genome Biol, 3: research0045.1-0045.16

7
Deal R B, Henikoff S (2010). A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell, 18(6): 1030–1040

DOI PMID

8
Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk L A, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable P S, Hochholdinger F (2007). Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol, 145(3): 575–588

DOI PMID

9
Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002). Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA, 99(24): 15794–15799

DOI PMID

10
Dinneny J R, Long T A, Wang J Y, Jung J W, Mace D, Pointer S, Barron C, Brady S M, Schiefelbein J, Benfey P N (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science, 320(5878): 942–945

DOI PMID

11
Edwards D, Murray J A, Smith A G (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol, 117(3): 1015–1022

DOI PMID

12
Emrich S J, Barbazuk W B, Li L, Schnable P S (2007). Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res, 17(1): 69–73

DOI PMID

13
Engel M L, Chaboud A, Dumas C, McCormick S (2003). Sperm cells of Zea mays have a complex complement of mRNAs. Plant J, 34(5): 697–707

DOI PMID

14
Galbraith D W, Birnbaum K (2006). Global studies of cell type-specific gene expression in plants. Annu Rev Plant Biol, 57(1): 451–475

DOI PMID

15
Honys D, Twell D (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol, 5(11): R85

DOI PMID

16
Ideker T, Galitski T, Hood L (2001). A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2(1): 343–372

DOI PMID

17
Jiao Y, Lau O S, Deng X W (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 8(3): 217–230

DOI PMID

18
Jiao Y, Meyerowitz E M (2010). Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol, 6: 419

DOI PMID

19
Jiao Y, Tausta S L, Gandotra N, Sun N, Liu T, Clay N K, Ceserani T, Chen M, Ma L, Holford M, Zhang H Y, Zhao H, Deng X W, Nelson T (2009). A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet, 41(2): 258–263

DOI PMID

20
Lee J Y, Colinas J, Wang J Y, Mace D, Ohler U, Benfey P N (2006). Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci USA, 103(15): 6055–6060

DOI PMID

21
Lee J Y, Levesque M, Benfey P N (2005). High-throughput RNA isolation technologies. New tools for high-resolution gene expression profiling in plant systems. Plant Physiol, 138(2): 585–590

DOI PMID

22
Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16(3): 596–615

DOI PMID

23
Levesque M P, Vernoux T, Busch W, Cui H, Wang J Y, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann J U, Scheres B, Benfey P N (2006). Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol, 4(5): e143

DOI PMID

24
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T P (2010). The developmental dynamics of the maize leaf transcriptome. Nat Genet, 42(12): 1060–1067

DOI PMID

25
Long T A, Brady S M, Benfey P N (2008). Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol, 24(1): 81–103

DOI PMID

26
Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng X W (2005). Organ-specific expression of Arabidopsis genome during development. Plant Physiol, 138(1): 80–91

DOI PMID

27
Motose H, Sugiyama M, Fukuda H (2004). A proteoglycan mediates inductive interaction during plant vascular development. Nature, 429(6994): 873–878

DOI PMID

28
Mustroph A, Zanetti M E, Jang C J, Holtan H E, Repetti P P, Galbraith D W, Girke T, Bailey-Serres J (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA, 106(44): 18843–18848

DOI PMID

29
Nakazono M, Qiu F, Borsuk L A, Schnable P S (2003). Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell, 15(3): 583–596

DOI PMID

30
Nawy T, Lee J Y, Colinas J, Wang J Y, Thongrod S C, Malamy J E, Birnbaum K, Benfey P N (2005). Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell, 17(7): 1908–1925

DOI PMID

31
Nelson T, Gandotra N, Tausta S L (2008). Plant cell types: reporting and sampling with new technologies. Curr Opin Plant Biol, 11(5): 567–573

DOI PMID

32
Nelson T, Tausta S L, Gandotra N, Liu T (2006). Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol, 57(1): 181–201

DOI PMID

33
Pina C, Pinto F, Feijó J A, Becker J D (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol, 138(2): 744–756

DOI PMID

34
Schmid M, Davison T S, Henz S R, Pape U J, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J U (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet, 37(5): 501–506

DOI PMID

35
Spencer M W, Casson S A, Lindsey K (2007). Transcriptional profiling of the Arabidopsis embryo. Plant Physiol, 143(2): 924–940

DOI PMID

36
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch B B, Siddiqui A, Lao K, Surani M A (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 6(5): 377–382

DOI PMID

37
Van Gelder R N, von Zastrow M E, Yool A, Dement W C, Barchas J D, Eberwine J H (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA, 87(5): 1663–1667

DOI PMID

38
Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004). Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry, 65(11): 1641–1649

DOI PMID

39
Wuest S E, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol, 20(6): 506–512

DOI PMID

40
Yadav R K, Girke T, Pasala S, Xie M, Reddy G V (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA, 106(12): 4941–4946

DOI PMID

41
Zanetti M E, Chang I F, Gong F, Galbraith D W, Bailey-Serres J (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol, 138(2): 624–635

DOI PMID

42
Zhang C, Barthelson R A, Lambert G M, Galbraith D W (2008). Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol, 147(1): 30–40

DOI PMID

Outlines

/