REVIEW

Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors

  • Vadim V. Davydov , 1 ,
  • Alexander V. Shestopalov 1 ,
  • Evgenya R. Grabovetskaya 2
Expand
  • 1. Chair of biochemistry and molecular biology Pirogov Russian National Research Medical University, Moscow, 117997, Russia
  • 2. Chair of biochemistry V.N. Karazin Kharkov National University, Ukraine, Kharkov, 61077, Ukraine

Received date: 26 Nov 2017

Accepted date: 15 Jan 2018

Published date: 26 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: Oxidative stress is an extremely widespread condition manifested in an increased rate of free-radical processes and accumulation of reactive oxygen species (ROS) in the tissues. It appears in different physiologic states and pathological processes accompanied by stimulation of the sympathetic adrenal system or tissue hypoxia or under stress. However, until now, there is still no clarity on the issue of the significance of oxidative stress in the development of adaptation processes in the organism.

OBJECTIVE: In the present work we will review the most recent finding about physiologic role of oxidative stress and its participation in adaptation of an organism to effect of different adverse factors.

METHODS: A systematic literature search was performed using the Pubmed search engine. Studies published over past 18 years, i.e. between 1998 and 2015 were considered for review. Followed keywords were used: “oxidative stress,” “free radical oxidation,” “ROS,” “endogenous aldehydes,” “adaptation.”

RESULTS: The article cites arguments supporting the notion that oxidative stress serves as a nonspecific link in the adaptation of the human body to the effects of injurious factors. Oxidative stress exerts regulatory effects by changing the redox state of the cell. Oxidative stress affects on various intracellular proteins containing cysteine ​​residues, e.g., enzymes, chaperones, and transcription factors, etc. For this reason, the use of antioxidants for the treatment and prophylaxis of a wide range of diseases is not recommended.

CONCLUSION: Further investigation is needed in this field. The most attention should be paid to careful experimental verification aimed at quantitative assessment of the ROS level in tissues under oxidative stress, as well as at the study of possibility of enhancing the catabolism of free radical oxidation carbonyl products in order to prevent tissue damage under oxidative stress.

Cite this article

Vadim V. Davydov , Alexander V. Shestopalov , Evgenya R. Grabovetskaya . Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Frontiers in Biology, 2018 , 13(1) : 19 -27 . DOI: 10.1007/s11515-018-1482-6

Compliance with ethics guidelines

Davydov V. V., Shestopalov A. V., and Grabovetskaya E. R. declare that they have no conflicts of interest related to this article. This article represents theoretical research. The authors did not use clinical samples or laboratory animals.
1
Afroze T, Sadi A M, Momen M A, Gu S, Heximer S, Husain M (2007). c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 27(6): 1305–1311

DOI PMID

2
Akhtar M, Wright J N (2015). Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1. Adv Exp Med Biol, 851: 107–130

DOI PMID

3
Antelmann H, Helmann J D (2011). Thiol-based redox switches and gene regulation. Antioxid Redox Signal, 14(6): 1049–1063

DOI PMID

4
Basse A L, Isidor M S, Winther S, Skjoldborg N B, Murholm M, Andersen E S, Pedersen S B, Wolfrum C, Quistorff B, Hansen J B (2017). Regulation of glycolysis in brown adipocytes by HIF-1a. Sci Rep, 7(1): 4052

DOI PMID

5
Baud O, Greene A E, Li J, Wang H, Volpe J J, Rosenberg P A (2004). Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci, 24(7): 1531–1540

DOI PMID

6
Becker L B (2004). New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res, 6 1 (3): 461 –470

7
Betteridge D J (2000). What is oxidative stress? Metabolism, 49(2 Suppl 1): 3–8

DOI PMID

8
Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S (2015). Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med, 78: 1–10

DOI PMID

9
Brandes N, Schmitt S, Jakob U (2009). Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal, 11(5): 997–1014

DOI PMID

10
Brown D I, Griendling K K (2015). Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res, 116(3): 531–549

DOI PMID

11
Chandel N S, Tuveson D A (2014). The promise and perils of antioxidants for cancer patients. N Engl J Med, 371(2): 177–178

DOI PMID

12
Chen Y, Azad M B, Gibson S B (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ, 16(7): 1040–1052

DOI PMID

13
Chen Y, Xu H, Liu J, Zhang C, Leutz A, Mo X (2007). The c-Myb functions as a downstream target of PDGF-mediated survival signal in vascular smooth muscle cells. Biochem Biophys Res Commun, 360(2): 433–436

DOI PMID

14
Chen Y R, Zweier J L (2014). Cardiac mitochondria and ROS generation. Circ Res, 114(3): 524–537

DOI PMID

15
Cheng Y, Chen G, Hong L, Zhou L, Hu M, Li B, Huang J, Xia L, Li C (2013). How does hypoxia inducible factor-1a participate in enhancing the glycolysis activity in cervical cancer? Ann Diagn Pathol, 17(3): 305–311

DOI PMID

16
Collins Y, Chouchani E T, James A M, Menger K E, Cochemé H M, Murphy M P (2012). Mitochondrial redox signalling at a glance. J Cell Sci, 125(Pt 4): 801–806

DOI PMID

17
Corre S, Galibert M D (2005). Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res, 18(5): 337–348

DOI PMID

18
Corre S, Galibert M D (2006). [USF as a key regulatory element of gene expression]. Med Sci (Paris), 22(1): 62–67

DOI PMID

19
Cox A G, Winterbourn C C, Hampton M B (2009). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J, 425(2): 313–325

DOI PMID

20
D’Autréaux B, Toledano M B (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 8(10): 813–824

DOI PMID

21
Davydov V V (2014). Age-dependent change in aldo-keto reductases composition in the blood of rats. Am J Biomed Life Sci, 2(1): 1–4

22
Davydov V V, Bozhkov A I, Grabovetskaya E R (2014). Age-related peculiarities of change in content of free radical oxidation products in muscle during stress. Fron Biol, 9(4): 283–286

23
Davydov V V, Bozhkov A I, Kulchitskiy O K (2012). Physiological and pathophysiological role of endogenous aldehydes, Saarbrucken: Palmarium Academic Publishing, 240 (inRussian)

24
Davydov V V, Dobaeva N M, Bozhkov A I (2004). Possible role of alteration of aldehyde’s scavenger enzymes during aging. Exp Gerontol, 39(1): 11–16

DOI PMID

25
Davydov V V, Shvets V N (2001). Lipid peroxidation in the heart of adult and old rats during immobilization stress. Exp Gerontol, 36(7): 1155–1160

DOI PMID

26
Davydov V V, Shvets V N (2003). Age-dependent differences in the stimulation of lipid peroxidation in the heart of rats during immobilization stress. Exp Gerontol, 38(6): 693–698

DOI PMID

27
Dröge W (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1): 47–95

DOI PMID

28
Dröse S, Brandt U, Wittig I (2014). Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta, 1844(8): 1344–1354

DOI PMID

29
Farrell K A, Withers S B, Holt C M (2011). C-Myb function in the vessel wall. Front Biosci (Elite Ed), 3: 968–977

PMID

30
Finkel T (2011). Signal transduction by reactive oxygen species. J Cell Biol, 194(1): 7–15

DOI PMID

31
Fridovich I (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci, 893(1 OXIDATIVE/ENE): 13–18

DOI PMID

32
Giles G I (2006). The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des, 12(34): 4427–4443

DOI PMID

33
Groitl B, Jakob U (2014). Thiol-based redox switches. Biochim Biophys Acta, 1844(8): 1335–1343

DOI PMID

34
Halliwell B (2009). The wanderings of a free radical. Free Radic Biol Med, 46(5): 531–542

DOI PMID

35
Halliwell B (2012). Free radicals and antioxidants: updating a personal view. Nutr Rev, 70(5): 257–265

DOI PMID

36
Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11(3): 298–300

DOI PMID

37
Hinerfeld D, Traini M D, Weinberger R P, Cochran B, Doctrow S R, Harry J, Melov S (2004). Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem, 88(3): 657–667

DOI PMID

38
Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheidereit C (1998). Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol, 18(3): 1266–1274

DOI PMID

39
Imlay J A (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 77(1): 755–776

DOI PMID

40
Jomova K, Valko M (2011). Advances in metal-induced oxidative stress and human disease. Toxicol, 283 (2 –3): 65–87

41
Kuntsevich N V (2010). The role of nuclear factor Nf-b in the rejection of transplatant. Vestnik transplantology and artifical organs, 1: 72–77 (in Russian)

42
Leonarduzzi G, Sottero B, Poli G (2010). Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther, 128(2): 336–374

DOI PMID

43
Leonarduzzi G, Sottero B, Testa G, Biasi F, Poli G (2011). New insights into redox-modulated cell signaling. Curr Pharm Des, 17(36): 3994–4006

DOI PMID

44
Ma Q (2013). Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53(1): 401–426

DOI PMID

45
Ma Q, and the MaQ (2008). Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol, 21(9): 1651–1671

DOI PMID

46
Marín-Hernández A, Gallardo-Pérez J C, Ralph S J, Rodríguez-Enríquez S, Moreno-Sánchez R (2009). HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem, 9(9): 1084–1101

DOI PMID

47
Meerson F Z (1984). Pathogenesis and prevention of stress and ischemic injures of heart. Moscow. Medicina (B Aires), 270 (in Russian)

48
Menshikova E B, Lankin V Z, Zenkov N K (2006). The oxidative stress. Antioxidants and prooxidants. Moscow: Slovo, 556 (in Russian)

49
Miki H, Funato Y (2012). Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem, 151(3): 255–261

DOI PMID

50
Montuschi P, Barnes P, Roberts L J 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem, 14(6): 703–717

DOI PMID

51
Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K (2008). Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 30(1): 108–113

DOI PMID

52
Muller F L, Lustgarten M S, Jang Y, Richardson A, Van Remmen H (2007). Trends in oxidative aging theories. Free Radic Biol Med, 43(4): 477–503

DOI PMID

53
Myung S K, Ju W, Cho B, Oh S W, Park S M, Koo B K, Park B J, and the Korean Meta-Analysis Study Group (2013). Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ, 346(jan18 1): f10

DOI PMID

54
Nayanatara A K, Nagaraja H S, Anupama B K (2005). The effect of repeated swimming stress on organ weights and lipid peroxidation in rats. Thai J Physiol Sci, 18(1): 3–9

55
Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M (2017). Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion, 33: 72–83

DOI PMID

56
O’Brein PJO, Siraki A G, Shangari N (2005). Aldehyde sources metabolism, molecular toxicity mechanisms,and possible effects on human health. Critical Reviews inToxicology, 35: 609–662

57
Piwowar A (2010). [Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property]. Pol Merkur Lekarski, 28(164): 166–169

PMID

58
Plotnikov E Y, Silachev D N, Jankauskas S S, Rokitskaya T I, Chupyrkina A A, Pevzner I B, Zorova L D, Isaev N K, Antonenko Y N, Skulachev V P, Zorov D B (2012). Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Mosc), 77(9): 1029–1037

DOI PMID

59
Poyton R O, Ball K A, Castello P R (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 20(7): 332–340

DOI PMID

60
Reczek C R, Chandel N S (2015). ROS-dependent signal transduction. Curr Opin Cell Biol, 33: 8–13

DOI PMID

61
Roginsky V A, Tashlitsky V N, Skulachev V P (2009). Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging (Albany NY), 1(5): 481–489

DOI PMID

62
Russell E G, Cotter T G (2015). New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes, 319: 221 –254

63
Sahin E, Gumuslu S (2007). Immobilization stress in rat tissues: alteration of protein oxidation, lipid peroxidation and antioxidant defense system. Comp Biochem Physio. C. Toxicol Pharmacol, 144(4): 324–347

64
Schieber M, Chandel N S (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24(10): R453–R462

DOI PMID

65
Sena L A, Chandel N S (2012). Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167

DOI PMID

66
Skulachev V P (2007). A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc), 72(12): 1385–1396

DOI PMID

67
Skulachev V P, Anisimov V N, Antonenko Y N, Bakeeva L E, Chernyak B V, Erichev V P, Filenko O F, Kalinina N I, Kapelko V I, Kolosova N G, Kopnin B P, Korshunova G A, Lichinitser M R, Obukhova L A, Pasyukova E G, Pisarenko O I, Roginsky V A, Ruuge E K, Senin I I, Severina I I, Skulachev M V, Spivak I M, Tashlitsky V N, Tkachuk V A, Vyssokikh M Y, Yaguzhinsky L S, Zorov D B (2009). An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta, 1787(5): 437–461

DOI PMID

68
Steinhubl S R (2008). Why have antioxidants failed in clinical trials? Am J Cardiol, 101(10 10A): 14D–19D

DOI PMID

69
Taverne Y J, Bogers A J, Duncker D J, Merkus D (2013). Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev, 2013: 862423

DOI PMID

70
Tell G, Quadrifoglio F, Tiribelli C, Kelley M R (2009). The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal, 11(3): 601–620

DOI PMID

71
Uchida K (2000). Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med, 28(12): 1685–1696

DOI PMID

72
Uchida K (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res, 42(4): 318–343

DOI PMID

73
Valko M, Izakovic M, Mazur M (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266 (1 – 2): 37 –56

74
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1): 44–84

DOI PMID

75
Vivekananthan D P, Penn M S, Sapp S K, Hsu A, Topol E J (2003). Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet, 361(9374): 2017–2023

DOI PMID

76
Wang G, Kawakami K, Gick G (2007). Regulation of Na,K-ATPase alpha1 subunit gene transcription in response to low K(+): role of CRE/ATF- and GC box-binding proteins. J Cell Physiol, 213(1): 167–176

DOI PMID

77
Welch K D, Davis T Z, Van Eden M E, Aust S D (2002). Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med, 32(7): 577–583

DOI PMID

78
Wilson L A, Yamamoto H, Singh G (2004). Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther, 3(7): 823–832

PMID

79
Winterbourn C C (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol, 4(5): 278–286

DOI PMID

80
Winterbourn C C (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol, 528: 3–25

DOI PMID

81
Ye Y, Li J, Yuan Z (2013). Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One, 8(2): e56803

DOI PMID

82
Yuksel S, Asma D, Yesilada O (2008). Antioxidative and metabolic responses to extended cold exposure in rats. Acta Biol Hung, 59(1): 57–66

DOI PMID

83
Zabłocka A, Janusz M (2008). [The two faces of reactive oxygen species]. Postepy Hig Med Dosw (Online), 62: 118–124

PMID

84
Zhang D X, Gutterman D D (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol, 292(5): H2023–H2031

DOI PMID

Outlines

/