REVIEW

GPCR, a rider of Alzheimer’s disease

  • Xiaosong LIU 1,2 ,
  • Jian ZHAO , 1
Expand
  • 1. Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
  • 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 10 Dec 2010

Accepted date: 27 Jan 2011

Published date: 01 Aug 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Alzheimer’s disease (AD) is the most common type of dementia that affects thinking, learning, memory and behavior of older people. Based on the previous studies, three pathogenic pathways are now commonly accepted as the culprits of this disease namely, amyloid-β pathway, tauopathology and cholinergic dysfunction. This review focuses on the current findings on the regulatory roles of G protein-coupled receptors (GPCRs) in the pathological progression of AD and discusses the potential of the GPCRs as novel therapeutic targets for AD.

Cite this article

Xiaosong LIU , Jian ZHAO . GPCR, a rider of Alzheimer’s disease[J]. Frontiers in Biology, 2011 , 6(4) : 282 -288 . DOI: 10.1007/s11515-011-1129-3

1
AbdAlla S, Lother H, el Missiry A, Langer A, Sergeev P, el Faramawy Y, Quitterer U (2009).Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J Biol Chem, 284: 6554–6565

DOI PMID

2
Alonso A C, Grundke-Iqbal I, Iqbal K (1996). Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med, 2(7): 783–787

DOI PMID

3
Alonso A C, Zaidi T, Grundke-Iqbal I, Iqbal K (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA, 91(12): 5562–5566

DOI PMID

4
Arjona A A, Pooler A M, Lee R K, Wurtman R J (2002). Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res, 951(1): 135–140

DOI PMID

5
Arriagada P V, Growdon J H, Hedley-Whyte E T, Hyman B T (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42(3 Pt 1): 631–639

PMID

6
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun, 301(1): 231–235

DOI PMID

7
Ashe K H (2007). A tale about tau. N Engl J Med, 357(9): 933–935

DOI PMID

8
Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672

DOI PMID

9
Baxter M G, Chiba A A (1999). Cognitive functions of the basal forebrain. Curr Opin Neurobiol, 9(2): 178–183

DOI PMID

10
Blalock E M, Geddes J W, Chen K C, Porter N M, Markesbery W R, Landfield P W (2004). Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA, 101(7): 2173–2178

DOI PMID

11
Bramham C R, Milgram N W, Srebro B (1991). Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res, 567(1): 42–50

DOI PMID

12
Brunden K R, Trojanowski J Q, Lee V M (2009). Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov, 8(10): 783–793

DOI PMID

13
Budde T (2006). AICD treatment in 2004—state of the art. Eur J Med Res, 11(10): 432–438

PMID

14
Caccamo A, Oddo S, Billings L M, Green K N, Martinez-Coria H, Fisher A, LaFerla F M (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron, 49(5): 671–682

DOI PMID

15
Chartier-Harlin M C, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 353(6347): 844–846

DOI PMID

16
Citron M (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov, 9(5): 387–398

DOI PMID

17
Doraiswamy P M, Xiong G L (2006). Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother, 7(1): 1–10

DOI PMID

18
El Khoury J, Toft M, Hickman S E, Means T K, Terada K, Geula C, Luster A D (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med, 13(4): 432–438

DOI PMID

19
Ferraguti F, Baldani-Guerra B, Corsi M, Nakanishi S, Corti C (1999). Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur J Neurosci, 11(6): 2073–2082

DOI PMID

20
Fisher A (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics, 5(3): 433–442

DOI PMID

21
Francis R, McGrath G, Zhang J, Ruddy D A, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis M C, Parks A L, Xu W, Li J, Gurney M, Myers R L, Himes C S, Hiebsch R, Ruble C, Nye J S, Curtis D (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell, 3(1): 85–97

DOI PMID

22
Gallagher M, King R A, Young N B (1983). Opiate antagonists improve spatial memory. Science, 221(4614): 975–976

DOI PMID

23
Gilman A G (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem, 56(1): 615–649

DOI PMID

24
Goate A, Chartier-Harlin M C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349(6311): 704–706

DOI PMID

25
Goedert M, Spillantini M G (2006). A century of Alzheimer’s disease. Science, 314(5800): 777–781

DOI PMID

26
Gomez-Isla T, Hollister R, West H, Mui S, Growdon J H, Petersen R C, Parisi J E, Hyman B T (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol, 41(1): 17–24

DOI PMID

27
Gong C X, Iqbal K (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem, 15(23): 2321–2328

DOI PMID

28
Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119

DOI PMID

29
Hesselgesser J, Horuk R (1999). Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol, 5(1): 13–26

DOI PMID

30
Hu Y, Fortini M E (2003). Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol, 161(4): 685–690

DOI PMID

31
Iismaa T P, Kiefer J, Liu M L, Baker E, Sutherland G R, Shine J (1994). Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics, 24(2): 391–394

DOI PMID

32
Ittner L M, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397

DOI PMID

33
Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard N P, Gerard C, Hama E, Lee H J, Saido T C (2001). Metabolic regulation of brain Abeta by neprilysin. Science, 292(5521): 1550–1552

DOI PMID

34
Ladner C J, Lee J M (1998). Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol, 57(8): 719–731

DOI PMID

35
LaFerla F M, Green K N, Oddo S (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci, 8(7): 499–509

DOI PMID

36
Lee H G, Ogawa O, Zhu X, O’Neill M J, Petersen R B, Castellani R J, Ghanbari H, Perry G, Smith M A (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol, 107(4): 365–371

DOI PMID

37
Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159

DOI PMID

38
Lefkowitz R J (2007). Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf), 190(1): 9–19

DOI PMID

39
Lefkowitz R J, Shenoy S K (2005). Transduction of receptor signals by beta-arrestins. Science, 308(5721): 512–517

DOI PMID

40
Leissring M A, Farris W, Chang A Y, Walsh D M, Wu X, Sun X, Frosch M P, Selkoe D J (2003). Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron, 40(6): 1087–1093

DOI PMID

41
Liu W H, Chang L S(2010). Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells BUNGARUS MULTICINCTUS PROTEASE INHIBITOR-LIKE PROTEIN-1 UNCOVERS THE CYTOTOXIC MECHANISM, J Biol Chem, 285(40): 30506–30515

42
Lleo A, Greenberg S M, Growdon J H (2006). Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med, 57(1): 513–533

DOI PMID

43
Martin Prince J J, Jackson J, eds (2010). Alzheimer’s Disease International, World Alzheimer Report 2009

44
Mathieu-Kia A M, Fan L Q, Kreek M J, Simon E J, Hiller J M (2001). Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res, 893(1-2): 121–134

DOI PMID

45
Matsuo E S, Shin R W, Billingsley M L, Van deVoorde A, O’Connor M, Trojanowski J Q, Lee V M (1994). Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron, 13(4): 989–1002

DOI PMID

46
Mesulam M M, Mufson E J, Wainer B H, Levey A I (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10(4): 1185–1201

DOI PMID

47
Mills J, Laurent Charest D, Lam F, Beyreuther K, Ida N, Pelech S L, Reiner P B (1997). Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci, 17(24): 9415–9422

PMID

48
Murrell J, Farlow M, Ghetti B, Benson M D (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science, 254(5028): 97–99

DOI PMID

49
Necula M, Kuret J (2004). Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem, 279(48): 49694–49703

DOI PMID

50
Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006). Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med, 12(12): 1390–1396

DOI PMID

51
Nitsch R M, Deng M, Growdon J H, Wurtman R J (1996). Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem, 271(8): 4188–4194

DOI PMID

52
Phillips T, Barnes A, Scott S, Emson P, Rees S (1998). Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport, 9(10): 2335–2339

DOI PMID

53
Pierce K L, Premont R T, Lefkowitz R J (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol, 3(9): 639–650

DOI PMID

54
Qiu W Q, Ye Z, Kholodenko D, Seubert P, Selkoe D J (1997). Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem, 272(10): 6641–6646

DOI PMID

55
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman L F, Galasko D R, Jutel M, Karydas A, Kaye J A, Leszek J, Miller B L, Minthon L, Quinn J F, Rabinovici G D, Robinson W H, Sabbagh M N, So Y T, Sparks D L, Tabaton M, Tinklenberg J, Yesavage J A, Tibshirani R, Wyss-Coray T (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med, 13(11): 1359–1362

DOI PMID

56
Roberson E D, Mucke L (2006). 100 years and counting: prospects for defeating Alzheimer’s disease. Science, 314(5800): 781–784

DOI PMID

57
Rogaev E I, Sherrington R, Rogaeva E A, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser P E, Rommens J M, George-Hyslop P H S (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376(6543): 775–778

DOI PMID

58
Russo-Neustadt A, Cotman C W (1997). Adrenergic receptors in Alzheimer’s disease brain: selective increases in the cerebella of aggressive patients. J Neurosci, 17(14): 5573–5580

PMID

59
Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang S M, Suemoto T, Higuchi M, Saido T C (2005). Somatostatin regulates brain amyloid beta peptide Aβ42 through modulation of proteolytic degradation. Nat Med, 11(4): 434–439

DOI PMID

60
Selkoe D J (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 81(2): 741–766

PMID

61
Shahani N, Brandt R (2002). Functions and malfunctions of the tau proteins. Cell Mol Life Sci, 59(10): 1668–1680

DOI PMID

62
Sherrington R, Rogaev E I, Liang Y, Rogaeva E A, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J F, Bruni A C, Montesi M P, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky R J, Wasco W, Da Silva H A, Haines J L, Perkicak-Vance M A, Tanzi R E, Roses A D, Fraser P E, Rommens J M, St George-Hyslop P H (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375(6534): 754–760

DOI PMID

63
Sinha S, Anderson J P, Barbour R, Basi G S, Caccavello R, Davis D, Doan M, Dovey H F, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari S M, Wang S, Walker D, Zhao J, McConlogue L, John V (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 402(6761): 537–540

DOI PMID

64
Sinha S, Lieberburg I (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci USA, 96(20): 11049–11053

DOI PMID

65
Sisodia S S, St George-Hyslop P H (2002). gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci, 3(4): 281–290

DOI PMID

66
Solano D C, Sironi M, Bonfini C, Solerte S B, Govoni S, Racchi M (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J, 14(7): 1015–1022

PMID

67
Strittmatter W J, Saunders A M, Schmechel D, Pericak-Vance M, Enghild J, Salvesen G S, Roses A D (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA, 90(5): 1977–1981

DOI PMID

68
Tabet N, Feldman H (2002). Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst Rev, (2): CD003673

PMID

69
Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature, 422(6930): 438–441

DOI PMID

70
Teng L, Zhao J, Wang F, Ma L, Pei G (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res, 20(2): 138–153

DOI PMID

71
Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horré K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer D F, Pollet D, De Strooper B, Merchiers P (2009). The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science, 323(5916): 946–951

DOI PMID

72
Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008). ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol, 20(9): 1181–1187

DOI PMID

73
Vassar R, Bennett B D, Babu-Khan S, Kahn S, Mendiaz E A, Denis P, Teplow D B, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski M A, Biere A L, Curran E, Burgess T, Louis J C, Collins F, Treanor J, Rogers G, Citron M (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286(5440): 735–741

DOI PMID

74
Watanabe N, Tomita T, Sato C, Kitamura T, Morohashi Y, Iwatsubo T (2005). Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. J Biol Chem, 280(51): 41967–41975

DOI PMID

75
Wyss-Coray T (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med, 12(9): 1005–1015

PMID

Outlines

/