Received date: 10 Dec 2010
Accepted date: 27 Jan 2011
Published date: 01 Aug 2011
Copyright
Alzheimer’s disease (AD) is the most common type of dementia that affects thinking, learning, memory and behavior of older people. Based on the previous studies, three pathogenic pathways are now commonly accepted as the culprits of this disease namely, amyloid-β pathway, tauopathology and cholinergic dysfunction. This review focuses on the current findings on the regulatory roles of G protein-coupled receptors (GPCRs) in the pathological progression of AD and discusses the potential of the GPCRs as novel therapeutic targets for AD.
Xiaosong LIU , Jian ZHAO . GPCR, a rider of Alzheimer’s disease[J]. Frontiers in Biology, 2011 , 6(4) : 282 -288 . DOI: 10.1007/s11515-011-1129-3
1 |
AbdAlla S, Lother H, el Missiry A, Langer A, Sergeev P, el Faramawy Y, Quitterer U (2009).Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J Biol Chem, 284: 6554–6565
|
2 |
Alonso A C, Grundke-Iqbal I, Iqbal K (1996). Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med, 2(7): 783–787
|
3 |
Alonso A C, Zaidi T, Grundke-Iqbal I, Iqbal K (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA, 91(12): 5562–5566
|
4 |
Arjona A A, Pooler A M, Lee R K, Wurtman R J (2002). Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res, 951(1): 135–140
|
5 |
Arriagada P V, Growdon J H, Hedley-Whyte E T, Hyman B T (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42(3 Pt 1): 631–639
|
6 |
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun, 301(1): 231–235
|
7 |
Ashe K H (2007). A tale about tau. N Engl J Med, 357(9): 933–935
|
8 |
Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672
|
9 |
Baxter M G, Chiba A A (1999). Cognitive functions of the basal forebrain. Curr Opin Neurobiol, 9(2): 178–183
|
10 |
Blalock E M, Geddes J W, Chen K C, Porter N M, Markesbery W R, Landfield P W (2004). Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA, 101(7): 2173–2178
|
11 |
Bramham C R, Milgram N W, Srebro B (1991). Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res, 567(1): 42–50
|
12 |
Brunden K R, Trojanowski J Q, Lee V M (2009). Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov, 8(10): 783–793
|
13 |
Budde T (2006). AICD treatment in 2004—state of the art. Eur J Med Res, 11(10): 432–438
|
14 |
Caccamo A, Oddo S, Billings L M, Green K N, Martinez-Coria H, Fisher A, LaFerla F M (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron, 49(5): 671–682
|
15 |
Chartier-Harlin M C, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 353(6347): 844–846
|
16 |
Citron M (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov, 9(5): 387–398
|
17 |
Doraiswamy P M, Xiong G L (2006). Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother, 7(1): 1–10
|
18 |
El Khoury J, Toft M, Hickman S E, Means T K, Terada K, Geula C, Luster A D (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med, 13(4): 432–438
|
19 |
Ferraguti F, Baldani-Guerra B, Corsi M, Nakanishi S, Corti C (1999). Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur J Neurosci, 11(6): 2073–2082
|
20 |
Fisher A (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics, 5(3): 433–442
|
21 |
Francis R, McGrath G, Zhang J, Ruddy D A, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis M C, Parks A L, Xu W, Li J, Gurney M, Myers R L, Himes C S, Hiebsch R, Ruble C, Nye J S, Curtis D (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell, 3(1): 85–97
|
22 |
Gallagher M, King R A, Young N B (1983). Opiate antagonists improve spatial memory. Science, 221(4614): 975–976
|
23 |
Gilman A G (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem, 56(1): 615–649
|
24 |
Goate A, Chartier-Harlin M C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349(6311): 704–706
|
25 |
Goedert M, Spillantini M G (2006). A century of Alzheimer’s disease. Science, 314(5800): 777–781
|
26 |
Gomez-Isla T, Hollister R, West H, Mui S, Growdon J H, Petersen R C, Parisi J E, Hyman B T (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol, 41(1): 17–24
|
27 |
Gong C X, Iqbal K (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem, 15(23): 2321–2328
|
28 |
Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119
|
29 |
Hesselgesser J, Horuk R (1999). Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol, 5(1): 13–26
|
30 |
Hu Y, Fortini M E (2003). Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol, 161(4): 685–690
|
31 |
Iismaa T P, Kiefer J, Liu M L, Baker E, Sutherland G R, Shine J (1994). Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics, 24(2): 391–394
|
32 |
Ittner L M, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397
|
33 |
Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard N P, Gerard C, Hama E, Lee H J, Saido T C (2001). Metabolic regulation of brain Abeta by neprilysin. Science, 292(5521): 1550–1552
|
34 |
Ladner C J, Lee J M (1998). Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol, 57(8): 719–731
|
35 |
LaFerla F M, Green K N, Oddo S (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci, 8(7): 499–509
|
36 |
Lee H G, Ogawa O, Zhu X, O’Neill M J, Petersen R B, Castellani R J, Ghanbari H, Perry G, Smith M A (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol, 107(4): 365–371
|
37 |
Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159
|
38 |
Lefkowitz R J (2007). Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf), 190(1): 9–19
|
39 |
Lefkowitz R J, Shenoy S K (2005). Transduction of receptor signals by beta-arrestins. Science, 308(5721): 512–517
|
40 |
Leissring M A, Farris W, Chang A Y, Walsh D M, Wu X, Sun X, Frosch M P, Selkoe D J (2003). Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron, 40(6): 1087–1093
|
41 |
Liu W H, Chang L S(2010). Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells BUNGARUS MULTICINCTUS PROTEASE INHIBITOR-LIKE PROTEIN-1 UNCOVERS THE CYTOTOXIC MECHANISM, J Biol Chem, 285(40): 30506–30515
|
42 |
Lleo A, Greenberg S M, Growdon J H (2006). Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med, 57(1): 513–533
|
43 |
Martin Prince J J, Jackson J, eds (2010). Alzheimer’s Disease International, World Alzheimer Report 2009
|
44 |
Mathieu-Kia A M, Fan L Q, Kreek M J, Simon E J, Hiller J M (2001). Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res, 893(1-2): 121–134
|
45 |
Matsuo E S, Shin R W, Billingsley M L, Van deVoorde A, O’Connor M, Trojanowski J Q, Lee V M (1994). Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron, 13(4): 989–1002
|
46 |
Mesulam M M, Mufson E J, Wainer B H, Levey A I (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10(4): 1185–1201
|
47 |
Mills J, Laurent Charest D, Lam F, Beyreuther K, Ida N, Pelech S L, Reiner P B (1997). Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci, 17(24): 9415–9422
|
48 |
Murrell J, Farlow M, Ghetti B, Benson M D (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science, 254(5028): 97–99
|
49 |
Necula M, Kuret J (2004). Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem, 279(48): 49694–49703
|
50 |
Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006). Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med, 12(12): 1390–1396
|
51 |
Nitsch R M, Deng M, Growdon J H, Wurtman R J (1996). Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem, 271(8): 4188–4194
|
52 |
Phillips T, Barnes A, Scott S, Emson P, Rees S (1998). Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport, 9(10): 2335–2339
|
53 |
Pierce K L, Premont R T, Lefkowitz R J (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol, 3(9): 639–650
|
54 |
Qiu W Q, Ye Z, Kholodenko D, Seubert P, Selkoe D J (1997). Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem, 272(10): 6641–6646
|
55 |
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman L F, Galasko D R, Jutel M, Karydas A, Kaye J A, Leszek J, Miller B L, Minthon L, Quinn J F, Rabinovici G D, Robinson W H, Sabbagh M N, So Y T, Sparks D L, Tabaton M, Tinklenberg J, Yesavage J A, Tibshirani R, Wyss-Coray T (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med, 13(11): 1359–1362
|
56 |
Roberson E D, Mucke L (2006). 100 years and counting: prospects for defeating Alzheimer’s disease. Science, 314(5800): 781–784
|
57 |
Rogaev E I, Sherrington R, Rogaeva E A, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser P E, Rommens J M, George-Hyslop P H S (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376(6543): 775–778
|
58 |
Russo-Neustadt A, Cotman C W (1997). Adrenergic receptors in Alzheimer’s disease brain: selective increases in the cerebella of aggressive patients. J Neurosci, 17(14): 5573–5580
|
59 |
Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang S M, Suemoto T, Higuchi M, Saido T C (2005). Somatostatin regulates brain amyloid beta peptide Aβ42 through modulation of proteolytic degradation. Nat Med, 11(4): 434–439
|
60 |
Selkoe D J (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 81(2): 741–766
|
61 |
Shahani N, Brandt R (2002). Functions and malfunctions of the tau proteins. Cell Mol Life Sci, 59(10): 1668–1680
|
62 |
Sherrington R, Rogaev E I, Liang Y, Rogaeva E A, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J F, Bruni A C, Montesi M P, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky R J, Wasco W, Da Silva H A, Haines J L, Perkicak-Vance M A, Tanzi R E, Roses A D, Fraser P E, Rommens J M, St George-Hyslop P H (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375(6534): 754–760
|
63 |
Sinha S, Anderson J P, Barbour R, Basi G S, Caccavello R, Davis D, Doan M, Dovey H F, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari S M, Wang S, Walker D, Zhao J, McConlogue L, John V (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 402(6761): 537–540
|
64 |
Sinha S, Lieberburg I (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci USA, 96(20): 11049–11053
|
65 |
Sisodia S S, St George-Hyslop P H (2002). gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci, 3(4): 281–290
|
66 |
Solano D C, Sironi M, Bonfini C, Solerte S B, Govoni S, Racchi M (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J, 14(7): 1015–1022
|
67 |
Strittmatter W J, Saunders A M, Schmechel D, Pericak-Vance M, Enghild J, Salvesen G S, Roses A D (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA, 90(5): 1977–1981
|
68 |
Tabet N, Feldman H (2002). Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst Rev, (2): CD003673
|
69 |
Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature, 422(6930): 438–441
|
70 |
Teng L, Zhao J, Wang F, Ma L, Pei G (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res, 20(2): 138–153
|
71 |
Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horré K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer D F, Pollet D, De Strooper B, Merchiers P (2009). The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science, 323(5916): 946–951
|
72 |
Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008). ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol, 20(9): 1181–1187
|
73 |
Vassar R, Bennett B D, Babu-Khan S, Kahn S, Mendiaz E A, Denis P, Teplow D B, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski M A, Biere A L, Curran E, Burgess T, Louis J C, Collins F, Treanor J, Rogers G, Citron M (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286(5440): 735–741
|
74 |
Watanabe N, Tomita T, Sato C, Kitamura T, Morohashi Y, Iwatsubo T (2005). Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. J Biol Chem, 280(51): 41967–41975
|
75 |
Wyss-Coray T (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med, 12(9): 1005–1015
|
/
〈 | 〉 |