REVIEW

Neurexins and neuroligins: new partners for GABAA receptors at synapses

  • Bei WU 1,3 ,
  • Chen ZHANG , 1,2
Expand
  • 1. State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Peking University, Beijing 100871, China
  • 2. Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA
  • 3. Center for Neurologic Diseases, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA

Received date: 15 Oct 2010

Accepted date: 10 Nov 2010

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. As one of several types of endogenous receptors, GABAA receptors have been shown to be essential in most, if not all, aspects of brain functioning, including neural development and information processing. Mutations in genes encoding GABAA receptors and alterations in the function of GABAA receptors are associated with many neurologic diseases, and GABAA receptors have been clinically targeted by many drugs, such as benzodiazepines and general anesthetics. Extensive studies have revealed a number of intracellular chaperons/interactions for GABAA receptors, providing a protein–protein network in regulating the trafficking and location of GABAA receptors in the brain. Recently, neurexins and neuroligins, two families of transmembrane proteins present at neurological synapses, are implicated as new partners to GABAA receptors. These works shed new light on the synaptic regulation of GABAA receptor activity. Here, we summarized the proteins that were implicated in the function of GABAA receptors, including neurexins and neuroligins.

Cite this article

Bei WU , Chen ZHANG . Neurexins and neuroligins: new partners for GABAA receptors at synapses[J]. Frontiers in Biology, 2011 , 6(3) : 251 -260 . DOI: 10.1007/s11515-011-1020-2

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program No. 2011CB809102 to C. Z.); and “985” Research Foundation of Peking University (to C. Z.).
1
Absalom N L, Schofield P R, Lewis T M (2009). Pore structure of the Cys-loop ligand-gated ion channels. Neurochem Res, 34(10): 1805–1815

DOI PMID

2
Alldred M J, Mulder-Rosi J, Lingenfelter S E, Chen G, Lüscher B (2005). Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J Neurosci, 25(3): 594–603

DOI PMID

3
Allison D W, Chervin A S, Gelfand V I, Craig A M (2000). Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci, 20(12): 4545–4554

PMID

4
Araç D, Boucard A A, Ozkan E, Strop P, Newell E, Südhof T C, Brunger A T (2007). Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron, 56(6): 992–1003

DOI PMID

5
Atasoy D, Ertunc M, Moulder K L, Blackwell J, Chung C, Su J, Kavalali E T (2008). Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci, 28(40): 10151–10166

DOI PMID

6
Baer K, Essrich C, Benson J A, Benke D, Bluethmann H, Fritschy J M, Lüscher B (1999). Postsynaptic clustering of gamma-aminobutyric acid type A receptors by the gamma3 subunit in vivo. Proc Natl Acad Sci USA, 96(22): 12860–12865

DOI PMID

7
Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme J F, Baulac M, Brice A, Bruzzone R, LeGuern E (2001). First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet, 28(1): 46–48

DOI PMID

8
Beck M, Brickley K, Wilkinson H L, Sharma S, Smith M, Chazot P L, Pollard S, Stephenson F A (2002). Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J Biol Chem, 277(33): 30079–30090

DOI PMID

9
Bedford F K, Kittler J T, Muller E, Thomas P, Uren J M, Merlo D, Wisden W, Triller A, Smart T G, Moss S J (2001). GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci, 4(9): 908–916

DOI PMID

10
Blatt G J (2005). GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol, 71: 167–178

DOI PMID

11
Boileau A J, Pearce R A, Czajkowski C (2005). Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein. J Neurosci, 25(49): 11219–11230

DOI PMID

12
Boucard A A, Chubykin A A, Comoletti D, Taylor P, Südhof T C (2005). A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron, 48(2): 229–236

DOI PMID

13
Brejc K, van Dijk W J, Klaassen R V, Schuurmans M, van Der Oost J, Smit A B, Sixma T K (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 411(6835): 269–276

DOI PMID

14
Brünig I, Scotti E, Sidler C, Fritschy J M (2002). Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol, 443(1): 43–55

DOI PMID

15
Bucan M, Abrahams B S, Wang K, Glessner J T, Herman E I, Sonnenblick L I, Alvarez Retuerto A I, Imielinski M, Hadley D, Bradfield J P, Kim C, Gidaya N B, Lindquist I, Hutman T, Sigman M, Kustanovich V, Lajonchere C M, Singleton A, Kim J, Wassink T H, McMahon W M, Owley T, Sweeney J A, Coon H, Nurnberger J I, Li M, Cantor R M, Minshew N J, Sutcliffe J S, Cook E H, Dawson G, Buxbaum J D, Grant S F, Schellenberg G D, Geschwind D H, Hakonarson H, Gibson G (2009). Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet, 5(6): e1000536

DOI PMID

16
Buhr A, Bianchi M T, Baur R, Courtet P, Pignay V, Boulenger J P, Gallati S, Hinkle D J, Macdonald R L, Sigel E (2002). Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Hum Genet, 111(2): 154–160

DOI PMID

17
Caraiscos V B, Elliott E M, You-Ten K E, Cheng V Y, Belelli D, Newell J G, Jackson M F, Lambert J J, Rosahl T W, Wafford K A, MacDonald J F, Orser B A (2004). Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA, 101(10): 3662–3667

DOI PMID

18
Cederholm J M E, Schofield P R, Lewis T M (2009). Gating mechanisms in Cys-loop receptors. Eur Biophys J, 39(1): 37–49

DOI PMID

19
Charych E I, Yu W, Miralles C P, Serwanski D R, Li X, Rubio M, De Blas A L (2004). The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J Neurochem, 90(1): 173–189

DOI PMID

20
Chen L, Wang H, Vicini S, Olsen R W (2000). The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA, 97(21): 11557–11562

DOI PMID

21
Chen Z W, Chang C S, Leil T A, Olcese R, Olsen R W (2005). GABAA receptor-associated protein regulates GABAA receptor cell-surface number in Xenopus laevis oocytes. Mol Pharmacol, 68(1): 152–159

DOI PMID

22
Cherlyn S Y T, Woon P S, Liu J J, Ong W Y, Tsai G C, Sim K (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev, 34(6): 958–977

DOI PMID

23
Cherubini E, Gaiarsa J L, Ben-Ari Y (1991). GABA: an excitatory transmitter in early postnatal life. Trends Neurosci, 14(12): 515–519

DOI PMID

24
Christie S B, Li R W, Miralles C P, Riquelme R, Yang B Y, Charych E, WendouYu, Daniels S B, Cantino M E, De Blas A L (2002). Synaptic and extrasynaptic GABAA receptor and gephyrin clusters. Prog Brain Res, 136: 157–180

DOI PMID

25
Chubykin A A, Atasoy D, Etherton M R, Brose N, Kavalali E T, Gibson J R, Südhof T C (2007). Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron, 54(6): 919–931

DOI PMID

26
Chubykin A A, Liu X, Comoletti D, Tsigelny I, Taylor P, Südhof T C (2005). Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J Biol Chem, 280(23): 22365–22374

DOI PMID

27
Cockcroft V B, Osguthorpe D J, Barnard E A, Lunt G G (1990). Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins, 8(4): 386–397

DOI PMID

28
Collins A L, Ma D, Whitehead P L, Martin E R, Wright H H, Abramson R K, Hussman J P, Haines J L, Cuccaro M L, Gilbert J R, Pericak-Vance M A (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 7(3): 167–174

DOI PMID

29
Connolly C N, Wafford K A (2004). The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans, 32(Pt3): 529–534

DOI PMID

30
Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire J M, Carmant L, Verner A, Lu W Y, Wang Y T, Rouleau G A (2002). Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet, 31(2): 184–189

DOI PMID

31
Craig A M, Kang Y (2007). Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol, 17(1): 43–52

DOI PMID

32
Dan B, Boyd S G (2003). Angelman syndrome reviewed from a neurophysiological perspective. The UBE3A-GABRB3 hypothesis. Neuropediatrics, 34(4): 169–176

DOI PMID

33
Dean C, Dresbach T (2006). Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci, 29(1): 21–29

DOI PMID

34
Dean C, Scholl F G, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003). Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci, 6(7): 708–716

DOI PMID

35
Dudanova I, Tabuchi K, Rohlmann A, Südhof T C, Missler M (2007). Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol, 502(2): 261–274

DOI PMID

36
Dykens E M, Sutcliffe J S, Levitt P (2004). Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues. Ment Retard Dev Disabil Res Rev, 10(4): 284–291

DOI PMID

37
Ernst M, Brauchart D, Boresch S, Sieghart W (2003). Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience, 119(4): 933–943

DOI PMID

38
Ernst M, Bruckner S, Boresch S, Sieghart W (2005). Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol, 68(5): 1291–1300

DOI PMID

39
Essrich C, Lorez M, Benson J A, Fritschy J M, Lüscher B (1998). Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci, 1(7): 563–571

DOI PMID

40
Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, Betz H, Wässle H (2000). Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J Comp Neurol, 427(4): 634–648

DOI PMID

41
Fredj N B, Burrone J (2009). A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci, 12(6): 751–758

DOI PMID

42
Fritschy J M, Johnson D K, Mohler H, Rudolph U (1998). Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett, 249(2-3): 99–102

DOI PMID

43
Fuhrmann J C, Kins S, Rostaing P, El Far O, Kirsch J, Sheng M, Triller A, Betz H, Kneussel M (2002). Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J Neurosci, 22(13): 5393–5402

PMID

44
Gibson J R, Huber K M, Südhof T C (2009). Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci, 29(44): 13883–13897

DOI PMID

45
Giesemann T, Schwarz G, Nawrotzki R, Berhörster K, Rothkegel M, Schlüter K, Schrader N, Schindelin H, Mendel R R, Kirsch J, Jockusch B M (2003). Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci, 23(23): 8330–8339

PMID

46
Giustetto M, Kirsch J, Fritschy J M, Cantino D, Sassoè-Pognetto M (1998). Localization of the clustering protein gephyrin at GABAergic synapses in the main olfactory bulb of the rat. J Comp Neurol, 395(2): 231–244

DOI PMID

47
Goldstein P A, Elsen F P, Ying S W, Ferguson C, Homanics G E, Harrison N L (2002). Prolongation of hippocampal miniature inhibitory postsynaptic currents in mice lacking the GABA(A) receptor alpha1 subunit. J Neurophysiol, 88(6): 3208–3217

DOI PMID

48
Gonzalez-Burgos G, Hashimoto T, Lewis D A (2010). Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep, 12(4): 335–344

DOI PMID

49
Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss S J, Hirata M (2005). Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Mol Cell Neurosci, 30(2): 197–206

DOI PMID

50
Graf E R, Zhang X, Jin S X, Linhoff M W, Craig A M (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 119(7): 1013–1026

DOI PMID

51
Guidotti A, Auta J, Davis J M, Dong E, Grayson D R, Veldic M, Zhang X, Costa E (2005). GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl), 180(2): 191–205

DOI PMID

52
Harvey K, Duguid I C, Alldred M J, Beatty S E, Ward H, Keep N H, Lingenfelter S E, Pearce B R, Lundgren J, Owen M J, Smart T G, Lüscher B, Rees M I, Harvey R J (2004). The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci, 24(25): 5816–5826

DOI PMID

53
Herd M B, Haythornthwaite A R, Rosahl T W, Wafford K A, Homanics G E, Lambert J J, Belelli D (2008). The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J Physiol, 586(4): 989–1004

DOI PMID

54
Hoon M, Bauer G, Fritschy J M, Moser T, Falkenburger B H, Varoqueaux F (2009). Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci, 29(25): 8039–8050

DOI PMID

55
Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof T C (1995). Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell, 81(3): 435–443

DOI PMID

56
Ichtchenko K, Nguyen T, Südhof T C (1996). Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem, 271(5): 2676–2682

DOI PMID

57
Jacob T C, Bogdanov Y D, Magnus C, Saliba R S, Kittler J T, Haydon P G, Moss S J (2005). Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci, 25(45): 10469–10478

DOI PMID

58
Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein O K (2002). A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 59(7): 1137–1141

DOI PMID

59
Kim H G, Kishikawa S, Higgins A W, Seong I S, Donovan D J, Shen Y, Lally E, Weiss L A, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris D J, Noens I, Pauls D L, Daly M J, MacDonald M E, Morton C C, Quade B J, Gusella J F (2008). Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet, 82(1): 199–207

DOI PMID

60
Kins S, Betz H, Kirsch J (2000). Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci, 3(1): 22–29

DOI PMID

61
Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O’Donovan M C, Erdogan F, Owen M J, Ropers H H, Ullmann R (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet, 17(3): 458–465

DOI PMID

62
Kirsch J, Betz H (1995). The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci, 15(6): 4148–4156

PMID

63
Kirsch J, Langosch D, Prior P, Littauer U Z, Schmitt B, Betz H (1991). The 93-kDa glycine receptor-associated protein binds to tubulin. J Biol Chem, 266(33): 22242–22245

PMID

64
Kittler J T, Delmas P, Jovanovic J N, Brown D A, Smart T G, Moss S J (2000). Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci, 20(21): 7972–7977

PMID

65
Kittler J T, Thomas P, Tretter V, Bogdanov Y D, Haucke V, Smart T G, Moss S J (2004). Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci USA, 101(34): 12736–12741

DOI PMID

66
Kneussel M, Brandstätter J H, Laube B, Stahl S, Müller U, Betz H (1999). Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci, 19(21): 9289–9297

PMID

67
Kneussel M, Haverkamp S, Fuhrmann J C, Wang H, Wässle H, Olsen R W, Betz H (2000). The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci USA, 97(15): 8594–8599

DOI PMID

68
Lalande M, Calciano M A (2007). Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci, 64(7-8): 947–960

DOI PMID

69
Leil T A, Chen Z W, Chang C S, Olsen R W (2004). GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci, 24(50): 11429–11438

DOI PMID

70
Lester H A, Dibas M I, Dahan D S, Leite J F, Dougherty D A (2004). Cys-loop receptors: new twists and turns. Trends Neurosci, 27(6): 329–336

DOI PMID

71
Lisé M F, El-Husseini A (2006). The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci, 63(16): 1833–1849

DOI PMID

72
Lüscher B, Keller C A (2004). Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther, 102(3): 195–221

DOI PMID

73
Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T, Takai Y (1998). Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun, 243(1): 86–89

DOI PMID

74
Marshall C R, Noor A, Vincent J B, Lionel A C, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars C E, Vos Y J, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons C A, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer S W (2008). Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet, 82(2): 477–488

DOI PMID

75
Maximov A, Tang J, Yang X, Pang Z P, Südhof T C (2009). Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science, 323(5913): 516–521

DOI PMID

76
Meyer G, Kirsch J, Betz H, Langosch D (1995). Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron, 15(3): 563–572

DOI PMID

77
Missler M, Fernandez-Chacon R, Südhof T C (1998). The making of neurexins. J Neurochem, 71(4): 1339–1347

DOI PMID

78
Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer R E, Gottmann K, Südhof T C (2003). Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 423(6943): 939–948

DOI PMID

79
Miyazawa A, Fujiyoshi Y, Unwin N (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature, 423(6943): 949–955

DOI PMID

80
Need A C, Ge D, Weale M E, Maia J, Feng S, Heinzen E L, Shianna K V, Yoon W, Kasperaviciūte D, Gennarelli M, Strittmatter W J, Bonvicini C, Rossi G, Jayathilake K, Cola P A, McEvoy J P, Keefe R S, Fisher E M, St Jean P L, Giegling I, Hartmann A M, Möller H J, Ruppert A, Fraser G, Crombie C, Middleton L T, St Clair D, Roses A D, Muglia P, Francks C, Rujescu D, Meltzer H Y, Goldstein D B (2009). A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet, 5(2): e1000373

DOI PMID

81
Nguyen T, Südhof T C (1997). Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem, 272(41): 26032–26039

DOI PMID

82
Nusser Z, Roberts J D, Baude A, Richards J G, Sieghart W, Somogyi P (1995). Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur J Neurosci, 7(4): 630–646

DOI PMID

83
Nusser Z, Sieghart W, Somogyi P (1998). Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci, 18(5): 1693–1703

PMID

84
Nutt D J, Malizia A L (2001). New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry, 179(5): 390–396

DOI PMID

85
Nymann-Andersen J, Wang H, Chen L, Kittler J T, Moss S J, Olsen R W (2002b). Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors. J Neurochem, 80(5): 815–823

DOI PMID

86
Nymann-Andersen J, Wang H, Olsen R W (2002a). Biochemical identification of the binding domain in the GABA(A) receptor-associated protein (GABARAP) mediating dimer formation. Neuropharmacology, 43(4): 476–481

DOI PMID

87
O’Sullivan G A, Kneussel M, Elazar Z, Betz H (2005). GABARAP is not essential for GABA receptor targeting to the synapse. Eur J Neurosci, 22(10): 2644–2648

DOI PMID

88
Ortinski P I, Lu C, Takagaki K, Fu Z, Vicini S (2004). Expression of distinct alpha subunits of GABAA receptor regulates inhibitory synaptic strength. J Neurophysiol, 92(3): 1718–1727

DOI PMID

89
Paarmann I, Schmitt B, Meyer B, Karas M, Betz H (2006). Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants. J Biol Chem, 281(46): 34918–34925

DOI PMID

90
Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey R J, Harvey K, O’Sullivan G A, Laube B, Hülsmann S, Geiger J R P, Betz H (2007). Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J, 26(17): 3888–3899

DOI PMID

91
Petryshen T L, Middleton F A, Tahl A R, Rockwell G N, Purcell S, Aldinger K A, Kirby A, Morley C P, McGann L, Gentile K L, Waggoner S G, Medeiros H M, Carvalho C, Macedo A, Albus M, Maier W, Trixler M, Eichhammer P, Schwab S G, Wildenauer D B, Azevedo M H, Pato M T, Pato C N, Daly M J, Sklar P (2005). Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry, 10(12): 1074–1088, 1057

DOI PMID

92
Pfeiffer F, Graham D, Betz H (1982). Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem, 257(16): 9389–9393

PMID

93
Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000). GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 101(4): 815–850

DOI PMID

94
Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher S W, Betz H, Harvey R J, Brose N, Zhang W, Varoqueaux F (2009). Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron, 63(5): 628–642

DOI PMID

95
Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J, (1992). Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron, 8(6): 1161–1170

DOI PMID

96
Rivera C, Voipio J, Payne J A, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999). The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 397(6716): 251–255

DOI PMID

97
Roberts E, Frankel S (1950). gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem, 187(1): 55–63

PMID

98
Rujescu D, Ingason A, Cichon S, Pietiläinen O P, Barnes M R, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason P I, Hardarsson G, Jonsdottir G A, Gustafsson O, Fossdal R, Giegling I, Möller H J, Hartmann A M, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen O A, Hansen T, Werge T, Kiemeney L A, Franke B, Veltman J, Buizer-Voskamp J E, GROUP Investigators, Sabatti C, Ophoff R A, Rietschel M, Nöthen M M, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier D A, (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet, 18(5): 988–996

PMID

99
Rupprecht R, Eser D, Zwanzger P, Möller H J (2006). GABAA receptors as targets for novel anxiolytic drugs. World J Biol Psychiatry, 7(4): 231–237

DOI PMID

100
Sassoè-Pognetto M, Panzanelli P, Sieghart W, Fritschy J M (2000). Colocalization of multiple GABA(A) receptor subtypes with gephyrin at postsynaptic sites. J Comp Neurol, 420(4): 481–498

DOI PMID

101
Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell, 101(6): 657–669

DOI PMID

102
Schmitz C, van Kooten I A J, Hof P R, van Engeland H, Patterson P H, Steinbusch H W M (2005). Autism: neuropathology, alterations of the GABAergic system, and animal models. Int Rev Neurobiol, 71: 1–26

DOI PMID

103
Shah A K, Tioleco N M, Nolan K, Locker J, Groh K, Villa C, Stopkova P, Pedrosa E, Lachman H M (2010). Rare NRXN1 promoter variants in patients with schizophrenia. Neurosci Lett, 475(2): 80–84

DOI PMID

104
Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Höger H, Adamiker D (1999). Structure and subunit composition of GABA(A) receptors. Neurochem Int, 34(5): 379–385

DOI PMID

105
Sieghart W, Sperk G (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem, 2(8): 795–816

DOI PMID

106
Smith G B, Olsen R W (1995). Functional domains of GABAA receptors. Trends Pharmacol Sci, 16(5): 162–168

DOI PMID

107
Smith M J, Pozo K, Brickley K, Stephenson F A (2006). Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J Biol Chem, 281(37): 27216–27228

DOI PMID

108
Solís-Añez E, Delgado-Luengo W, Hernández M L (2007). Autism, chromosome 15 and the GAbaergic dysfunction hypothesis. Invest Clin, 48(4): 529–541 (in Spanish) PMID:18271397

109
Song J Y, Ichtchenko K, Südhof T C, Brose N (1999). Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA, 96(3): 1100–1105

DOI PMID

110
Südhof T C (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215): 903–911

DOI PMID

111
Szatmari P, Paterson A D, Zwaigenbaum L, Roberts W, Brian J, Liu X Q, Vincent J B, Skaug J L, Thompson A P, Senman L, Feuk L, Qian C, Bryson S E, Jones M B, Marshall C R, Scherer S W, Vieland V J, Bartlett C, Mangin L V, Goedken R, Segre A, Pericak-Vance M A, Cuccaro M L, Gilbert J R, Wright H H, Abramson R K, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum J D, Davis K L, Hollander E, Silverman J M, Hallmayer J, Lotspeich L, Sutcliffe J S, Haines J L, Folstein S E, Piven J, Wassink T H, Sheffield V, Geschwind D H, Bucan M, Brown W T, Cantor R M, Constantino J N, Gilliam T C, Herbert M, Lajonchere C, Ledbetter D H, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse C A, Spence S, State M, Tanzi R E, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon W M, Minshew N, Munson J, Korvatska E, Rodier P M, Schellenberg G D, Smith M, Spence M A, Stodgell C, Tepper P G, Wijsman E M, Yu C E, Rogé B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck S M, Schuster C, Poustka F, Bölte S, Feineis-Matthews S, Herbrecht E, Schmötzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F, Koop F, Langemeijer M, Langemeijer M, Hijmans C, Hijimans C, Staal W G, Baird G, Bolton P F, Rutter M L, Weisblatt E, Green J, Aldred C, Wilkinson J A, Pickles A, Le Couteur A, Berney T, McConachie H, Bailey A J, Francis K, Honeyman G, Hutchinson A, Parr J R, Wallace S, Monaco A P, Barnby G, Kobayashi K, Lamb J A, Sousa I, Sykes N, Cook E H, Guter S J, Leventhal B L, Salt J, Lord C, Corsello C, Hus V, Weeks D E, Volkmar F, Tauber M, Fombonne E, Shih A, Meyer K J, and the Autism Genome Project Consortium (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet, 39(3): 319–328

DOI PMID

112
Tabuchi K, Südhof T C (2002). Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics, 79(6): 849–859

DOI PMID

113
Tanida I, Ueno T, Kominami E (2004). LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 36(12): 2503–2518

DOI PMID

114
Taniguchi H, Gollan L, Scholl F G, Mahadomrongkul V, Dobler E, Limthong N, Peck M, Aoki C, Scheiffele P (2007). Silencing of neuroligin function by postsynaptic neurexins. J Neurosci, 27(11): 2815–2824

DOI PMID

115
Todd A J, Watt C, Spike R C, Sieghart W (1996). Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci, 16(3): 974–982

PMID

116
Twelvetrees A E, Yuen E Y, Arancibia-Carcamo I L, MacAskill A F, Rostaing P, Lumb M J, Humbert S, Triller A, Saudou F, Yan Z, Kittler J T (2010). Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron, 65(1): 53–65

DOI PMID

117
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100–113

DOI PMID

118
Unwin N (2005). Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol, 346(4): 967–989

DOI PMID

119
Ushkaryov Y A, Petrenko A G, Geppert M, Südhof T C (1992). Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science, 257(5066): 50–56

DOI PMID

120
Varoqueaux F, Aramuni G, Rawson R L, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof T C, Brose N (2006). Neuroligins determine synapse maturation and function. Neuron, 51(6): 741–754

DOI PMID

121
Varoqueaux F, Jamain S, Brose N (2004). Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol, 83(9): 449–456

DOI PMID

122
Vithlani M, Moss S J (2009). The role of GABAAR phosphorylation in the construction of inhibitory synapses and the efficacy of neuronal inhibition. Biochem Soc Trans, 37(Pt 6): 1355–1358

DOI PMID

123
Wallace R H, Marini C, Petrou S, Harkin L A, Bowser D N, Panchal R G, Williams D A, Sutherland G R, Mulley J C, Scheffer I E, Berkovic S F (2001). Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 28(1): 49–52

DOI PMID

124
Walsh T, McClellan J M, McCarthy S E, Addington A M, Pierce S B, Cooper G M, Nord A S, Kusenda M, Malhotra D, Bhandari A, Stray S M, Rippey C F, Roccanova P, Makarov V, Lakshmi B, Findling R L, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler E E, Meltzer P S, Nelson S F, Singleton A B, Lee M K, Rapoport J L, King M C, Sebat J (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875): 539–543

DOI PMID

125
Wang H, Bedford F K, Brandon N J, Moss S J, Olsen R W (1999). GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature, 397(6714): 69–72

DOI PMID

126
Wei W, Zhang N, Peng Z, Houser C R, Mody I (2003). Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci, 23(33): 10650–10661

PMID

127
Whatley V J, Mihic S J, Allan A M, McQuilkin S J, Harris R A (1994). Gamma-aminobutyric acidA receptor function is inhibited by microtubule depolymerization. J Biol Chem, 269(30): 19546–19552

PMID

128
Whiting P J (1999). The GABA-A receptor gene family: new targets for therapeutic intervention. Neurochem Int, 34(5): 387–390

DOI PMID

129
Wiśniowiecka-Kowalnik B, Nesteruk M, Peters S U, Xia Z, Cooper M L, Savage S, Amato R S, Bader P, Browning M F, Haun C L, Duda A W 3rd, Cheung S W, Stankiewicz P (2010). Intragenic rearrangements in NRXN1 in three families with autism spectrum disorder, developmental delay, and speech delay. Am J Med Genet B Neuropsychiatr Genet, 153B(5): 983–993

PMID

130
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S (2001). Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics, 74(3): 408–413

DOI PMID

131
Xu J, Pang Z P, Shin O H, Südhof T C (2009). Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci, 12(6): 759–766

DOI PMID

132
Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz C E, Sommer S S (2008). Neurexin 1alpha structural variants associated with autism. Neurosci Lett, 438(3): 368–370

DOI PMID

133
Zahir F R, Baross A, Delaney A D, Eydoux P, Fernandes N D, Pugh T, Marra M A, Friedman J M (2008). A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1alpha. J Med Genet, 45(4): 239–243

DOI PMID

134
Zhang C, Atasoy D, Araç D, Yang X, Fucillo M V, Robison A J, Ko J, Brunger A T, Südhof T C (2010). Neurexins physically and functionally interact with GABA(A) receptors. Neuron, 66(3): 403–416

DOI PMID

135
Zhang C, Milunsky J M, Newton S, Ko J, Zhao G, Maher T A, Tager-Flusberg H, Bolliger M F, Carter A S, Boucard A A, Powell C M, Südhof T C (2009). A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci, 29(35): 10843–10854

DOI PMID

Outlines

/