REVIEW

The applications of induced pluripotent stem (iPS) cells in drug development

  • Shulong YANG 1 ,
  • Xuelian WANG 2 ,
  • Jinmiao LIU 1 ,
  • Zhao LIU 1 ,
  • Jiaxue HUANG , 2,3
Expand
  • 1. Life Technologies, Vcanland Holding Group
  • 2. Union Stem Cell & Gene Engineering Co. LTD, Tianjin 300384, China
  • 3. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

Received date: 29 Sep 2010

Accepted date: 31 Oct 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry.

Cite this article

Shulong YANG , Xuelian WANG , Jinmiao LIU , Zhao LIU , Jiaxue HUANG . The applications of induced pluripotent stem (iPS) cells in drug development[J]. Frontiers in Biology, 0 , 06(01) : 52 -57 . DOI: 10.1007/s11515-011-0940-1

1
Barbaric I, Gokhale P J, Andrews P W (2010). High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans, 38(4): 1046–1050

DOI PMID

2
Bass A J, Watanabe H, Mermel C H, Yu S, Perner S, Verhaak R G, Kim S Y, Wardwell L, Tamayo P, Gat-Viks I, Ramos A H, Woo M S, Weir B A, Getz G, Beroukhim R, O’Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac L R, Lafargue C J, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs D B, Lin L, Giordano T J, Wagner P, Minna J D, Gazdar A F, Zhu C Q, Brose M S, Cecconello I, Jr U R, Marie S K, Dahl O, Shivdasani R A, Tsao M S, Rubin M A, Wong K K, Regev A, Hahn W C, Beer D G, Rustgi A K, Meyerson M (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet, 41(11): 1238–1242

DOI PMID

3
Baxter M A, Rowe C, Alder J, Harrison S, Hanley K P, Park B K, Kitteringham N R, Goldring C E, Hanley N A (2010). Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res (Amst), 5(1): 4–22

DOI PMID

41
Centofanti M (2010). Models of the stem cell kind. ALS Alert Newsletter, News, <OrgAddress>http://www.alscenter.org/news/newsletter/2010/November/models_of_the_stem_cell_kind.html</OrgAddress>

4
Chu L H, Chen B S (2008). Comparisons of robustness and sensitivity between cancer and normal cells by microarray data. Cancer Inform, 6: 165–181

PMID

5
Crook J M, Kobayashi N R (2008). Human stem cells for modeling neurological disorders: accelerating the drug discovery pipeline. J Cell Biochem, 105(6): 1361–1366

DOI PMID

6
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221

DOI PMID

7
Doss M X, Sachinidis A, Hescheler J (2008). Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol, 51(4): 226–229

PMID

8
Duinsbergen D, Salvatori D, Eriksson M, Mikkers H (2009). Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci, 1176(1): 197–204

DOI PMID

9
Ebert A D, Svendsen C N (2010). Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov, 9(5): 367–372

DOI PMID

10
Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280

DOI PMID

11
Foster K W, Frost A R, McKie-Bell P, Lin C Y, Engler J A, Grizzle W E, Ruppert J M (2000). Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res, 60(22): 6488–6495

PMID

12
Gunaseeli I, Doss M X, Antzelevitch C, Hescheler J, Sachinidis A (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem, 17(8): 759–766

DOI PMID

13
Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858): 1920–1923

DOI PMID

14
Heng B C, Richards M, Shu Y, Gribbon P (2009). Induced pluripotent stem cells: a new tool for toxicology screening? Arch Toxicol, 83(7): 641–644

DOI PMID

15
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 121(3): 465–477

DOI PMID

16
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 26(7): 795–797

DOI PMID

17
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton D A (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 26(11): 1269–1275

DOI PMID

18
Ichida J K, Blanchard J, Lam K, Son E Y, Chung J E, Egli D, Loh K M, Carter A C, Di Giorgio F P, Koszka K, Huangfu D, Akutsu H, Liu D R, Rubin L L, Eggan K (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5): 491–503

DOI PMID

19
Jeter C R, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley G Q, Tang D G (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells, 27(5): 993–1005

DOI PMID

20
Kaitin K I (2008). Obstacles and opportunities in new drug development. Clin Pharmacol Ther, 83(2): 210–212

DOI PMID

21
Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262): 402–406

DOI PMID

22
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs . Nat Methods, 6(11): 805–808

DOI PMID

23
Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel R L, Melton D A (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA, 106(37): 15768–15773

DOI PMID

24
Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier L S, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5): 507–517

DOI PMID

25
Meyer N, Penn L Z (2008). Reflecting on 25 years with MYC. Nat Rev Cancer, 8(12): 976–990

DOI PMID

26
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA, 107(32): 14152–14157

DOI PMID

27
Nakao Y, Narazaki G, Hoshino T, Maeda S, Yoshida M, Maejima H, Yamashita J K (2008). Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg Med Chem Lett, 18(9): 2982–2984

DOI PMID

42
Neveu P, Kye M J, Qis, Buchholz D E, Clegg D O, Sahin M, Park I H, Kim K S, Daley G Q, Kornblum H I, Shraiman B I, Kossk K S (2010). MicroRNA profiling reveals two distinct p53-related human pluripotent stem cells states. Cell Stem Cell, 7(6): 671–681

DOI PMID

28
Schüle B, Pera R A, Langston J W (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta, 1792(11): 1043–1051

PMID

29
Shi Y, Do J T, Desponts C, Hahm H S, Schöler H R, Ding S (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6): 525–528

DOI PMID

30
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5): 964–977

DOI PMID

31
Sollano J A, Kirsch J M, Bala M V, Chambers M G, Harpole L H (2008). The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther, 84(2): 263–266

DOI PMID

32
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

DOI PMID

33
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

DOI PMID

34
Viswanathan S R, Powers J T, Einhorn W, Hoshida Y, Ng T L, Toffanin S, O’Sullivan M, Lu J, Phillips L A, Lockhart V L, Shah S P, Tanwar P S, Mermel C H, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes T P, Llovet J M, Radich J, Mullighan C G, Golub T R, Sorensen P H, Daley G Q (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet, 41(7): 843–848

DOI PMID

35
Vojnits K, Bremer S (2010). Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology, 270(1): 10–17

DOI PMID

36
Wernig M, Lengner C J, Hanna J, Lodato M A, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008a). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol, 26(8): 916–924

DOI PMID

37
Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008b). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 105(15): 5856–5861

DOI PMID

38
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920

DOI PMID

39
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Zhao Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3(5): 475–479

DOI PMID

40
Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler H R, Duan L, Ding S (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5): 381–384

DOI PMID

Outlines

/