RESEARCH ARTICLE

Comparative analysis of metabolic network of pathogens

  • Kumar Gaurav ,
  • Yasha Hasija
Expand
  • Department of Biotechnology, Delhi Technological University, Delhi – 110042, India

Received date: 30 Aug 2016

Accepted date: 20 Dec 2016

Published date: 17 Apr 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Metabolic networks are complex and system of highly connected chemical reactions and hence it needs a system level computational approach to identify the genotype- phenotype relationship. The study of essential genes and reactions and synthetic lethality of genes and reactions plays a crucial role in explaining functional links between genes and gene function predictions.

METHODS: Flux balance analysis (FBA) has been developed as a powerful method for the in silico analyses of metabolic networks. In this study, we present the comparative analysis of the genomic scale metabolic networks of the four microorganisms i.e.Salmonella typhimurium, Mycobacterium tuberculosis, Staphylococcus aureus,andHelicobacter pylori. The fluxes of all reaction were obtained and the growth rate of the organism was calculated by setting the biomass reaction as the objective function.

RESULTS & CONCLUSIONS:The average lethality fraction of all the four organisms studied ranged from 0.2 to 0.6. It was also observed that there are very few metabolites which are highly connected. Those metabolites that are highly connected are supposed to be the ‘global players’ similar to the hub protein in the protein – protein interaction network.

Cite this article

Kumar Gaurav , Yasha Hasija . Comparative analysis of metabolic network of pathogens[J]. Frontiers in Biology, 2017 , 12(2) : 139 -150 . DOI: 10.1007/s11515-017-1440-8

Compliance with ethics guidelines

Kumar Gaurav and Yasha Hasija declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Feist and Palsson (2008). The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnol, 226(6):659–667

2
Alper H, Jin  Y S, Moxley  J F, Stephanopoulos  G (2005). Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng, 7(3): 155–164nbsp;

DOI PMID

3
Plaimas K, Eils  R, König R . Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC systems biology. 2010 May 3;4(1):1

4
Chowdhury R, Chowdhury  A, Maranas C D  (2015). Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models. Metabolites, 5(4): 536–570nbsp;

DOI PMID

5
Becker S A, Palsson  B Ø (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation.   BMC Microbiol, 5(1): 8

6
Schilling C H ,  Covert M W ,  Famili I ,  Church G M ,  Edwards J S ,  Palsson B O  (2002). Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol, 184(16):4582–4593

7
Deutscher D, Meilijson  I, Kupiec M ,  Ruppin E  (2006). Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet, 38(9): 993–998nbsp;

DOI PMID

8
Edwards J S, Ramakrishna  R, Palsson B O  (2001). Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng, 77(1):27–36 

PMID

9
Hamilton J J, Reed  J L (2012). Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One, 7(4): e34670nbsp; 

DOI PMID

10
Heinemann M, Kummel  A, Ruinatscha R ,  Panke S  (2005). In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng, 92(7):850–64

11
Jamshidi N, Palsson  B Ø (2007). Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol, 1(1): 26nbsp;

DOI PMID

12
Schellenberger J, Que  R, Fleming R M ,  Thiele I ,  Orth J D ,  Feist A M ,  Zielinski D C ,  Bordbar A ,  Lewis N E ,  Rahmanian S ,  Kang J, Hyduke  D R, Palsson  B Ø (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 6(9):1290–1307

13
Keating S M (2006). SBMLToolbox: an SBML toolbox for MATLAB users.   Bioinformatics, 22(10):1275–1277

14
Masel J, Siegal  M L (2010). Robustness: mechanisms and consequences. Trends Genet, 25(9):395–403

15
Raman K, Chandra  N (2009). Flux balance analysis of biological systems: applications and challenges. Brief Bioinform, 10(4):435–449

16
Kauffman K J, Prakash  P, Edwards J S (2003). Advances in flux balance analysis. Curr Opin Biotechnol, 14(5): 491–496nbsp; 

DOI PMID

17
McClelland M, Sanderson  K E, Spieth  J, Clifton S W ,  Latreille P ,  Courtney L ,  Porwollik S ,  Ali J, Dante  M, Du F ,  Hou S, Layman  D, Leonard S ,  Nguyen C ,  Scott K ,  Holmes A ,  Grewal N ,  Mulvaney E ,  Ryan E, Sun  H, Florea L ,  Miller W ,  Stoneking T ,  Nhan M, Waterston  R, Wilson R K  (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413(6858):852–856

18
Nijman S M B  (2011). Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett, 585(1): 1–6nbsp; 

DOI PMID

19
Pratapa A, Balachandran  S, Raman K  (2015). Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics, 31(20): 3299–3305

DOI PMID

20
Raghunathan A, Reed  J, Shin S ,  Palsson B ,  Daefler S  (2009). Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol, 3(1): 38 nbsp; 

DOI PMID

21
Raman K, Rajagopalan  P, Chandra N  (2005). Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput Biol, 1(5): e46

DOI PMID

22
Suthers P F, Zomorrodi  A, Maranas C D  (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol, 5: 301

DOI PMID

23
Thiele I, Hyduke  D R, Steeb  B, Fankam G ,  Allen D K ,  Bazzani S ,  Charusanti P ,  Chen F C ,  Fleming R M ,  Hsiung C A ,  De Keersmaecker S C ,  Liao Y C ,  Marchal K ,  Mo M L ,  Özdemir E ,  Raghunathan A ,  Reed J L ,  Shin S I ,  Sigurbjörnsdóttir S ,  Steinmann J ,  Sudarsan S ,  Swainston N ,  Thijs I M ,  Zengler K ,  Palsson B O ,  Adkins J N ,  Bumann D  (2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol, 5: 8

24
Thiele I, Vo  TD, Price ND ,  Palsson B Ø  (2005). Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol, 187(16):5818–5830

Outlines

/