Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis
Received date: 14 Sep 2016
Accepted date: 30 Nov 2016
Published date: 28 Feb 2017
Copyright
BACKGROUND: The 26S proteasome is at the heart of the ubiquitin-proteasome system, which is the key cellular pathway for the regulated degradation of proteins and enforcement of protein quality control. The 26S proteasome is an unusually large and complicated protease comprising a 28-subunit core particle (CP) capped by one or two 19-subunit regulatory particles (RP). Multiple activities within the RP process incoming ubiquitinated substrates for eventual degradation by the barrel-shaped CP. The large size and elaborate architecture of the proteasome have made it an exceptional model for understanding mechanistic themes in macromolecular assembly.
OBJECTIVE: In the present work, we highlight the most recent mechanistic insights into proteasome assembly, with particular emphasis on intrinsic and extrinsic factors regulating proteasome biogenesis. We also describe new and exciting questions arising about how proteasome assembly is regulated and deregulated in normal and diseased cells.
METHODS: A comprehensive literature search using the PubMed search engine was performed, and key findings yielding mechanistic insight into proteasome assembly were included in this review.
RESULTS: Key recent studies have revealed that proteasome biogenesis is dependent upon intrinsic features of the subunits themselves as well as extrinsic factors, many of which function as dedicated chaperones.
CONCLUSION: Cells rely on a diverse set of mechanistic strategies to ensure the rapid, efficient, and faithful assembly of proteasomes from their cognate subunits. Importantly, physiological as well as pathological changes to proteasome assembly are emerging as exciting paradigms to alter protein degradation in vivo.
Lauren A. Howell , Robert J. Tomko Jr. , Andrew R. Kusmierczyk . Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis[J]. Frontiers in Biology, 2017 , 12(1) : 19 -48 . DOI: 10.1007/s11515-017-1439-1
1 |
Agarwal A K, Xing C, DeMartino G N, Mizrachi D, Hernandez M D, Sousa A B, Martínez de Villarreal L, dos Santos H G, Garg A (2010). PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet, 87(6): 866–872
|
2 |
Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013). Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun, 4: 2234
|
3 |
Arendt C S, Hochstrasser M (1997). Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA, 94(14): 7156–7161
|
4 |
Arendt C S, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J, 18(13): 3575–3585
|
5 |
Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, Tanaka M, Toyoshima I, Sugino H, Yamakawa A, Tanaka K, Niikawa N, Furukawa F, Murata S, Eguchi K, Ida H, Yoshiura K (2011). Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci USA, 108(36): 14914–14919
|
6 |
Asano S, Fukuda Y, Beck F, Aufderheide A, Forster F, Danev R, Baumeister W (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347(6220): 439–442
|
7 |
Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, Goldberg A L, Sakata E, Baumeister W, Förster F (2015). Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA, 112(28): 8626–8631
|
8 |
Bader M, Benjamin S, Wapinski O L, Smith D M, Goldberg A L, Steller H (2011). A conserved f box regulatory complex controls proteasome activity in Drosophila. Cell, 145(3): 371–382
|
9 |
Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S (2014). Assembly mechanisms of specialized core particles of the proteasome. Biomolecules, 4(3): 662–677
|
10 |
Barrault M B, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier J B, Le Du M H, Guerois R, Ochsenbein F, Peyroche A (2012). Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA, 109(17): E1001–E1010
|
11 |
Barthelme D, Chen J Z, Grabenstatter J, Baker T A, Sauer R T (2014). Architecture and assembly of the archaeal Cdc48•20S proteasome. Proc Natl Acad Sci USA, 111(17): E1687–E1694
|
12 |
Barthelme D, Jauregui R, Sauer RT (2015). An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci, 24:1521–1527
|
13 |
Barthelme D, Sauer R T (2012a). Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096): 843–846
|
14 |
Barthelme D, Sauer RT (2012b). Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096): 843–846
|
15 |
Barthelme D, Sauer R T (2013). Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc Natl Acad Sci USA, 110(9): 3327–3332
|
16 |
Bashore C, Dambacher C M, Goodall E A, Matyskiela M E, Lander G C, Martin A (2015). Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol, 22(9): 712–719
|
17 |
Basler M, Kirk C J, Groettrup M (2013). The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol, 25(1): 74–80
|
18 |
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko J M, Villa E, Baumeister W, Forster F (2012). Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA, 109(37): 14870–14875
|
19 |
Beckwith R, Estrin E, Worden E J, Martin A (2013). Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol, 20(10): 1164–1172
|
20 |
Benaroudj N, Goldberg A L (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol, 2(11): 833–839
|
21 |
Braun B C, Glickman M, Kraft R, Dahlmann B, Kloetzel P M, Finley D, Schmidt M (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol, 1(4): 221–226
|
22 |
Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J, Levy F (2000). Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA, 97(19): 10348–10353
|
23 |
Cascio P (2014). PA28alphabeta: the enigmatic magic ring of the proteasome? Biomolecules, 4(2): 566–584
|
24 |
Chen P, Hochstrasser M (1996). Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell, 86(6): 961–972
|
25 |
Chu-Ping M, Slaughter C A, DeMartino G N (1992). Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta, 1119(3): 303–311
|
26 |
Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon Y T, Ciechanover A (2016). p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci USA, 113(47): E7490–E7499
|
27 |
Colot H V, Park G, Turner G E, Ringelberg C, Crew C M, Litvinkova L, Weiss R L, Borkovich K A, Dunlap J C (2006). A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA, 103(27): 10352–10357
|
28 |
da Fonseca P C, He J, Morris E P (2012). Molecular Model of the Human 26S Proteasome. Mol Cell, 46(1): 54–66
|
29 |
Dahlqvist J, Klar J, Tiwari N, Schuster J, Törmä H, Badhai J, Pujol R, van Steensel M A M, Brinkhuizen T, Gijezen L, Chaves A, Tadini G, Vahlquist A, Dahl N (2010). A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet, 86(4): 596–603
|
30 |
Dambacher C M, Worden E J, Herzik M A, Martin A, Lander G C (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife, 5: e13027
|
31 |
Dange T, Smith D, Noy T, Rommel P C, Jurzitza L, Cordero R J B, Legendre A, Finley D, Goldberg A L, Schmidt M (2011). Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem, 286(50): 42830–42839
|
32 |
De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A, Griffin T A (2003). Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem, 278(8): 6153–6159
|
33 |
De La Mota-Peynado A, Lee S Y, Pierce B M, Wani P, Singh C R, Roelofs J (2013). The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem, 288(41): 29467–29481
|
34 |
DeMartino G N, Proske R J, Moomaw C R, Strong A A, Song X, Hisamatsu H, Tanaka K, Slaughter C A (1996). Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem, 271(6): 3112–3118
|
35 |
Ding W X, Ni H M, Gao W, Yoshimori T, Stolz D B, Ron D, Yin X M (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol, 171(2): 513–524
|
36 |
Driscoll J, Brown M G, Finley D, Monaco J J (1993). MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature, 365(6443): 262–264
|
37 |
Enenkel C, Lehmann A, Kloetzel P M (1998). Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J, 17(21): 6144–6154
|
38 |
Estrin E, Lopez-Blanco J R, Chacon P, Martin A (2013). Formation of an Intricate Helical Bundle Dictates the Assembly of the 26S Proteasome Lid. Structure, 21(9): 1624–1635
|
39 |
Fehlker M, Wendler P, Lehmann A, Enenkel C (2003). Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep, 4(10): 959–963
|
40 |
Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513
|
41 |
Forouzan D, Ammelburg M, Hobel C F, Stroh L J, Sessler N, Martin J, Lupas A N (2012). The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem, 287(46): 39254–39262
|
42 |
Forster A, Masters E I, Whitby F G, Robinson H, Hill C P (2005). The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell, 18(5): 589–599
|
43 |
Fort P, Kajava A V, Delsuc F, Coux O (2015). Evolution of proteasome regulators in eukaryotes. Genome Biol Evol, 7(5): 1363–1379
|
44 |
Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel P M (1994). 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J Mol Biol, 236(4): 975–981
|
45 |
Fricke B, Heink S, Steffen J, Kloetzel P M, Kruger E (2007). The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep, 8(12): 1170–1175
|
46 |
Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010). Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 396(4): 1048–1053
|
47 |
Funakoshi M, Tomko R J Jr, Kobayashi H, Hochstrasser M (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell, 137(5): 887–899
|
48 |
Gaczynska M, Rock K L, Goldberg A L (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 365(6443): 264–267
|
49 |
Gerards W L, Enzlin J, Häner M, Hendriks I LA M, Aebi U , Bloemendal H, Boelens W (1997). The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem, 272(15): 10080–10086
|
50 |
Gerards W L, de Jong W W, Bloemendal H, Boelens W (1998). The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. J Mol Biol, 275(1): 113–121
|
51 |
Ghaemmaghami S, Huh W K, Bower K, Howson R W, Belle A, Dephoure N, O’Shea E K, Weissman J S (2003). Global analysis of protein expression in yeast. Nature, 425(6959): 737–741
|
52 |
Gille C, Goede A, Schlöetelburg C, Preißner R, Kloetzel P M, Göbel U B, Frömmel C (2003). A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol, 326(5): 1437–1448
|
53 |
Gillette T G, Kumar B, Thompson D, Slaughter C A, DeMartino G N (2008). Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem, 283(46): 31813–31822
|
54 |
Gomes A V (2013). Genetics of proteasome diseases. Scientifica (Cairo), 2013: 637629
|
55 |
Gragnoli C, Cronsell J (2007). PSMD9 gene variants within NIDDM2 may rarely contribute to type 2 diabetes. J Cell Physiol, 212(3): 568–571
|
56 |
Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J, Colbert R A (1998). Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med, 187(1): 97–104
|
57 |
Griffin T A, Slack J P, McCluskey T S, Monaco J J, Colbert R A (2000). Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun, 3(4): 212–217
|
58 |
Groettrup M, Standera S, Stohwasser R, Kloetzel P M (1997). The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA, 94(17): 8970–8975
|
59 |
Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R (2003). Investigations on the maturation and regulation of archaebacterial proteasomes. J Mol Biol, 327(1): 75–83
|
60 |
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik H D, Huber R (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386(6624): 463–471
|
61 |
Groll M, Glickman M H, Finley D, Bajorek M, Köhler A, Moroder L, Rubin D M, Huber R (2000). A gated channel into the proteasome core particle. Nat Struct Biol, 7(11): 1062–1067
|
62 |
Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H, Huber R (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA, 96(20): 10976–10983
|
63 |
Haarer B, Aggeli D, Viggiano S, Burke D J, Amberg D C (2011). Novel interactions between actin and the proteasome revealed by complex haploinsufficiency. PLoS Genet, 7(9): e1002288
|
64 |
Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A (2014). An inducible chaperone adapts proteasome assembly to stress. Mol Cell, 55(4): 566–577
|
65 |
Hatanaka A, Chen B, Sun J Q, Mano Y, Funakoshi M, Kobayashi H, Ju Y, Mizutani T, Shinmyozu K, Nakayama J, Miyamoto K, Uchida H, Oki M (2011). Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet Syst, 86(5): 305–314
|
66 |
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf D H (1997). The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem, 272(40): 25200–25209
|
67 |
Heink S, Ludwig D, Kloetzel P M, Kruger E (2005). IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA, 102(26): 9241–9246
|
68 |
Hirano Y, Hayashi H, Iemura S, Hendil K B, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006). Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell, 24(6): 977–984
|
69 |
Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005). A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature, 437(7063): 1381–1385
|
70 |
Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008). Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J, 27(16): 2204–2213
|
71 |
Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A (2009). Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther, 8(7): 1974–1984
|
72 |
Hoefer M M, Boneberg E M, Grotegut S, Kusch J, Illges H (2006). Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol, 38(3-5): 259–267
|
73 |
Huang X, Luan B, Wu J, Shi Y (2016). An atomic structure of the human 26S proteasome. Nat Struct Mol Biol, 23(9): 778–785
|
74 |
Huber E M, Heinemeyer W, Li X, Arendt C S, Hochstrasser M, Groll M (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun, 7: 10900
|
75 |
Huh W K, Falvo J V, Gerke L C, Carroll A S, Howson R W, Weissman J S, O’Shea E K (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959): 686–691
|
76 |
Ishii K, Noda M, Yagi H, Thammaporn R, Seetaha S, Satoh T, Kato K, Uchiyama S (2015). Disassembly of the self-assembled, double-ring structure of proteasome alpha7 homo-tetradecamer by alpha6. Sci Rep, 5: 18167
|
77 |
Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007). The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell, 18(2): 569–580
|
78 |
Iwata A, Riley B E, Johnston J A, Kopito R R (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem, 280(48): 40282–40292
|
79 |
Jager S, Groll M, Huber R, Wolf D H, Heinemeyer W (1999). Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol, 291(4): 997–1013
|
80 |
Ju D, Xie Y (2004). Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent. J Biol Chem, 279(23): 23851–23854
|
81 |
Kaganovich D, Kopito R, Frydman J (2008). Misfolded proteins partition between two distinct quality control compartments. Nature, 454(7208): 1088–1095
|
82 |
Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009). Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell, 137(5): 914–925
|
83 |
Kim D U, Hayles J, Kim D, Wood V, Park H O, Won M, Yoo H S, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek S T, Lee H, Shim Y S, Lee M, Kim L, Heo K S, Noh E J, Lee A R, Jang Y J, Chung K S, Choi S J, Park J Y, Park Y, Kim H M, Park S K, Park H J, Kang E J, Kim H B, Kang H S, Park H M, Kim K, Song K, Song K B, Nurse P, Hoe K L (2010a). Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol, 28(6): 617–623
|
84 |
Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, Yamane T, Tanaka K, Mizushima T, Kato K (2010b). Crystal structure of yeast rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J Biol Chem, 285(20): 15159–15166
|
85 |
Kim Y C, Snoberger A, Schupp J, Smith D M (2015). ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun, 6(8520):1
|
86 |
Kingsbury D J, Griffin T A, Colbert R A (2000). Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem, 275(31): 24156–24162
|
87 |
Kleijnen M F, Roelofs J, Park S, Hathaway N A, Glickman M, King R W, Finley D (2007). Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol, 14(12): 1180–1188
|
88 |
Kloetzel P M (2004). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol, 5(7): 661–669
|
89 |
Kock M, Nunes M M, Hemann M, Kube S, Jürgen Dohmen R, Herzog F, Ramos P C, Wendler P (2015). Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun, 6: 6123
|
90 |
Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, Ichijo H, Hamazaki J, Murata S (2016). The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife, 5: e18357
|
91 |
Kragelund B B, Schenstrom S M, Rebula C A, Panse V G, Hartmann-Petersen R (2016). DSS1/Sem1, a multifunctional and intrinsically disordered protein. Trends Biochem Sci, 41(5): 446–459
|
92 |
Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen A M B, Hartmann-Petersen R, Hendil K B (2008). Mammalian 26S proteasomes remain intact during protein degradation. Cell, 135(2): 355–365
|
93 |
Kulak N A, Pichler G, Paron I, Nagaraj N, Mann M (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods, 11(3): 319–324
|
94 |
Kusmierczyk A R, Hochstrasser M (2008). Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem, 389(9): 1143–1151
|
95 |
Kusmierczyk A R, Kunjappu M J, Funakoshi M, Hochstrasser M (2008). A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol, 15(3): 237–244
|
96 |
Kusmierczyk A R, Kunjappu M J, Kim R Y, Hochstrasser M (2011). A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol, 18(5): 622–629
|
97 |
Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004a). Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245
|
98 |
Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004b). Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245
|
99 |
Lander G C, Estrin E, Matyskiela M E, Bashore C, Nogales E, Martin A (2012). Complete subunit architecture of the proteasome regulatory particle. Nature, 482: 186–191
|
100 |
Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012). Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA, 109(5): 1380–1387
|
101 |
Le Tallec B, Barrault M B, Courbeyrette R, Guerois R, Marsolier-Kergoat M C, Peyroche A (2007). 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell, 27(4): 660–674
|
102 |
Le Tallec B, Barrault M B, Guerois R, Carre T, Peyroche A (2009). Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell, 33(3): 389–399
|
103 |
Lee S C, Shaw B D (2007). A novel interaction between N-myristoylation and the 26S proteasome during cell morphogenesis. Mol Microbiol, 63(4): 1039–1053
|
104 |
Lee S Y, De la Mota-Peynado A, Roelofs J (2011). Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem, 286(42): 36641–36651
|
105 |
Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H, Finley D (2002). Multiple associated proteins regulate proteasome structure and function. Mol Cell, 10(3): 495–507
|
106 |
Lehmann A, Janek K, Braun B, Kloetzel P M, Enenkel C (2002). 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol, 317(3): 401–413
|
107 |
Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C (2010). Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell, 38(6): 879–888
|
108 |
Lehrbach N J, Ruvkun G (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife, 5: e17721
|
109 |
Lek M, Karczewski K J, Minikel E V, Samocha K E, Banks E, Fennell T, O’Donnell-Luria A H, Ware J S, Hill A J, Cummings B B, Tukiainen T, Birnbaum D P, Kosmicki J A, Duncan L E, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper D N, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M I, Moonshine A L, Natarajan P, Orozco L, Peloso G M, Poplin R, Rivas M A, Ruano-Rubio V, Rose S A, Ruderfer D M, Shakir K, Stenson P D, Stevens C, Thomas B P, Tiao G, Tusie-Luna M T, Weisburd B, Won H H, Yu D, Altshuler D M, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez J C, Gabriel S B, Getz G, Glatt S J, Hultman C M, Kathiresan S, Laakso M, McCarroll S, McCarthy M I, McGovern D, McPherson R, Neale B M, Palotie A, Purcell S M, Saleheen D, Scharf J M, Sklar P, Sullivan P F, Tuomilehto J, Tsuang M T, Watkins H C, Wilson J G, Daly M J, MacArthur D G (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616): 285–291
|
110 |
Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D T, Ma Q, Liu X, Cao C (2015). c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Reports, 10(4): 484–496
|
111 |
Li J, Zou C, Bai Y, Wazer D E, Band V, Gao Q (2006). DSS1 is required for the stability of BRCA2. Oncogene, 25(8): 1186–1194
|
112 |
Li X, Kusmierczyk A R, Wong P, Emili A, Hochstrasser M (2007). beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J, 26(9): 2339–2349
|
113 |
Li X, Li Y, Arendt C S, Hochstrasser M (2016). Distinct elements in the proteasomal beta5 subunit propeptide required for autocatalytic processing and proteasome assembly. J Biol Chem, 291(4): 1991–2003
|
114 |
Li X, Thompson D, Kumar B, DeMartino G N (2014). Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem, 289(25): 17392–17405
|
115 |
Liu J, Yuan X, Liu J, Tian L, Quan J, Liu J, Chen X, Wang Y, Shi Z, Zhang J (2012). Validation of the association between PSMA6 -8 C/G polymorphism and type 2 diabetes mellitus in Chinese Dongxiang and Han populations. Diabetes Res Clin Pract, 98(2): 295–301
|
116 |
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science, 268(5210): 533–539
|
117 |
Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley D J, Shi Y, Wang F (2016). Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA, 113(10): 2642–2647
|
118 |
Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett, 450(1-2): 27–34
|
119 |
Mao I, Liu J, Li X, Luo H (2008). REGgamma, a proteasome activator and beyond? Cellular and molecular life sciences. Cell Mol Life Sci, 65: 3971–3980
|
120 |
Marques A J, Glanemann C, Ramos P C, Dohmen R J (2007). The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem, 282(48): 34869–34876
|
121 |
Marshall R S, Li F, Gemperline D C, Book A J, Vierstra R D (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell, 58(6): 1053–1066
|
122 |
Marshall R S, McLoughlin F, Vierstra R D (2016). Autophagic turnover of inactive 26S Proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Reports, 16(6): 1717–1732
|
123 |
Matyskiela M E, Lander G C, Martin A (2013). Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol, 20(7): 781–788
|
124 |
Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998a). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188
|
125 |
Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998b). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188
|
126 |
Mayr J, Wang H R, Nederlof P, Baumeister W (1999). The import pathway of human and Thermoplasma 20S proteasomes into HeLa cell nuclei is different from that of classical NLS-bearing proteins. Biol Chem, 380(10): 1183–1192
|
127 |
Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M, Kruger E (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem, 278(24): 21517–21525
|
128 |
Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316(5829): 1349–1353
|
129 |
Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007). Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun, 359(3): 503–509
|
130 |
Nandi D, Woodward E, Ginsburg D B, Monaco J J (1997). Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J, 16(17): 5363–5375
|
131 |
Nederlof P M, Wang H R, Baumeister W (1995). Nuclear localization signals of human and Thermoplasma proteasomal alpha subunits are functional in vitro. Proc Natl Acad Sci USA, 92(26): 12060–12064
|
132 |
Pack C G, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, Sakata E, Murata S, Yokosawa H, Sako Y, Baumeister W, Tanaka K, Saeki Y (2014). Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun, 5: 3396
|
133 |
Padmanabhan A, Vuong S A, Hochstrasser M (2016). Assembly of an evolutionarily conserved alternative proteasome isoform in human cells. Cell Reports, 14(12): 2962–2974
|
134 |
Pandey U B, Nie Z, Batlevi Y, McCray B A, Ritson G P, Nedelsky N B, Schwartz S L, DiProspero N A, Knight M A, Schuldiner O, Padmanabhan R, Hild M, Berry D L, Garza D, Hubbert C C, Yao T P, Baehrecke E H, Taylor J P (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447(7146): 859–863
|
135 |
Panfair D, Ramamurthy A, Kusmierczyk A R (2015). Alpha-ring independent assembly of the 20S proteasome. Sci Rep, 5: 13130
|
136 |
Paraskevopoulos K, Kriegenburg F, Tatham M H, Rösner H I, Medina B, Larsen I B, Brandstrup R, Hardwick K G, Hay R T, Kragelund B B, Hartmann-Petersen R, Gordon C (2014). Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell, 56(3): 453–461
|
137 |
Park S, Kim W, Tian G, Gygi S P, Finley D (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem, 286(42): 36652–36666
|
138 |
Park S, Li X, Kim H M, Singh C R, Tian G, Hoyt M A, Lovell S, Battaile K P, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013). Reconfiguration of the proteasome during chaperone-mediated assembly. Nature, 497(7450): 512–516
|
139 |
Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi S P, Finley D (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 459(7248): 866–870
|
140 |
Pathare G R, Nagy I, Sledz P, Anderson D J, Zhou H J, Pardon E, Steyaert J, Forster F, Bracher A, Baumeister W (2014). Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA, 111(8): 2984–2989
|
141 |
Peters L Z, Karmon O, David-Kadoch G, Hazan R, Yu T, Glickman M H, Ben-Aroya S (2015). The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet, 11(4): e1005178
|
142 |
Radhakrishnan S K, den Besten W, Deshaies R J (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife, 3: e01856
|
143 |
Radhakrishnan S K, Lee C S, Young P, Beskow A, Chan J Y, Deshaies R J (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell, 38(1): 17–28
|
144 |
Ramos P C, Hockendorff J, Johnson E S, Varshavsky A, Dohmen R J (1998). Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell, 92(4): 489–499
|
145 |
Ramos P C, Marques A J, London M K, Dohmen R J (2004). Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem, 279(14): 14323–14330
|
146 |
Reits E A, Benham A M, Plougastel B, Neefjes J, Trowsdale J (1997). Dynamics of proteasome distribution in living cells. EMBO J, 16(20): 6087–6094
|
147 |
Roelofs J, Park S, Haas W, Tian G, McAllister F E, Huo Y, Lee B H, Zhang F, Shi Y, Gygi S P, Finley D (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 459(7248): 861–865
|
148 |
Russell S J, Steger K A, Johnston S A (1999). Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem, 274(31): 21943–21952
|
149 |
Sa-Moura B, Simões A M, Fraga J, Fernandes H, Abreu I A, Botelho H M, Gomes C M, Marques A J, Dohmen R J, Ramos P C, Macedo-Ribeiro S (2013). Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotechnol J, 7(8): e201304006
|
150 |
Sadre-Bazzaz K, Whitby F G, Robinson H, Formosa T, Hill C P (2010). Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell, 37(5): 728–735
|
151 |
Saeki Y, Toh E A, Kudo T, Kawamura H, Tanaka K (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137(5): 900–913
|
152 |
Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson C V (2011). The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell, 42(5): 637–649
|
153 |
Satoh T, Saeki Y, Hiromoto T, Wang Y H, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014). Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure, 22(5): 731–743
|
154 |
Savulescu A F, Shorer H, Kleifeld O, Cohen I, Gruber R, Glickman M H, Harel A (2011). Nuclear import of an intact preassembled proteasome particle. Mol Biol Cell, 22(6): 880–891
|
155 |
Schmidt M, Haas W, Crosas B, Santamaria P G, Gygi S P, Walz T, Finley D (2005). The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol, 12(4): 294–303
|
156 |
Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel P M, Schmidt M (1996). Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J, 15: 6887–6898
|
157 |
Schmidtke G, Schmidt M, Kloetzel P M (1997). Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol, 268(1): 95–106
|
158 |
Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko J M, Sakata E, Schulten K, Förster F, Baumeister W (2016). Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA, 113(28): 7816–7821
|
159 |
Sha Z, Goldberg A L (2014). Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol, 24(14): 1573–1583
|
160 |
Sharon M, Taverner T, Ambroggio X I, Deshaies R J, Robinson C V (2006). Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol, 4(8): e267
|
161 |
Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson C V (2007). Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem, 282(25): 18448–18457
|
162 |
Shi Y, Chen X, Elsasser S, Stocks B B, Tian G, Lee B H, Shi Y, Zhang N, de Poot S A H, Tuebing F, Sun S, Vannoy J, Tarasov S G, Engen J R, Finley D, Walters K J (2016). Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science
|
163 |
Shirozu R, Yashiroda H, Murata S (2015). Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett, 589(8): 933–940
|
164 |
Singh C R, Lovell S, Mehzabeen N, Chowdhury W Q, Geanes E S, Battaile K P, Roelofs J (2014). 1.15 A resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallogr F Struct Biol Commun, 70(4): 418–423
|
165 |
Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Forster F, Baumeister W (2013). Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA, 110(18): 7264–7269
|
166 |
Smith D M, Chang S C, Park S, Finley D, Cheng Y, Goldberg A L (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell, 27(5): 731–744
|
167 |
Sokolova V, Li F, Polovin G, Park S (2015). Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci Rep, 5: 14909
|
168 |
Stadtmueller B M, Hill C P (2011). Proteasome activators. Mol Cell, 41(1): 8–19
|
169 |
Stadtmueller B M, Kish-Trier E, Ferrell K, Petersen C N, Robinson H, Myszka D G, Eckert D M, Formosa T, Hill C P (2012). Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem, 287(44): 37371–37382
|
170 |
Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem, 287(15): 12172–12182
|
171 |
Takagi K, Saeki Y, Yashiroda H, Yagi H, Kaiho A, Murata S, Yamane T, Tanaka K, Mizushima T, Kato K (2014). Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome alpha-ring formation. Biochem Biophys Res Commun, 450(2): 1110–1114
|
172 |
Takeuchi J, Tamura T (2004). Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett, 565(1-3): 39–42
|
173 |
Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990). Possible mechanism of nuclear translocation of proteasomes. FEBS Lett, 271(1-2): 41–46
|
174 |
Thompson D, Hakala K, DeMartino G N (2009). Subcomplexes of PA700, the 19S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J Biol Chem, 284(37): 24891–24903
|
175 |
Tian G, Park S, Lee M J, Huck B, McAllister F, Hill C P, Gygi S P, Finley D (2011). An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol, 18(11): 1259–1267
|
176 |
Tomko R J Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell, 38(3): 393–403
|
177 |
Tomko R J Jr, Hochstrasser M (2011). Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell, 44(6): 907–917
|
178 |
Tomko R J Jr, Hochstrasser M (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem, 82(1): 415–445
|
179 |
Tomko R J Jr, Hochstrasser M (2014). The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell, 53(3): 433–443
|
180 |
Tomko R J Jr, Taylor D W, Chen Z A, Wang H W, Rappsilber J, Hochstrasser M (2015). A Single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell, 163(2): 432–444
|
181 |
Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2014). Backbone (1)H, (1)(3)C and (1)(5)N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign, 8(2): 383–386
|
182 |
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002). The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure, 10(5): 609–618
|
183 |
Unverdorben P, Beck F, led P, Schweitzer A, Pfeifer G, Plitzko J M, Baumeister W, Forster F (2014). Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA, 111(15): 5544–5549
|
184 |
Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO J, 21(13): 3516–3525
|
185 |
Velichutina I, Connerly P L, Arendt C S, Li X, Hochstrasser M (2004). Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J, 23(3): 500–510
|
186 |
Verma R,
|
187 |
Volker C, Lupas A N (2002). Molecular evolution of proteasomes. Curr Top Microbiol Immunol, 268: 1–22
|
188 |
Waite K A, De-La Mota-Peynado A, Vontz G, Roelofs J (2016). Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem, 291(7): 3239–3253
|
189 |
Wang H R, Kania M, Baumeister W, Nederlof P M (1997). Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur J Cell Biol, 73: 105–113
|
190 |
Wang W, Chan J Y (2006). Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem, 281(28): 19676–19687
|
191 |
Wani P S, Rowland M A, Ondracek A, Deeds E J, Roelofs J (2015). Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun, 6: 6384
|
192 |
Wani P S, Suppahia A, Capalla X, Ondracek A, Roelofs J (2016). Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep, 6: 27873
|
193 |
Weberruss M H, Savulescu A F, Jando J, Bissinger T, Harel A, Glickman M H, Enenkel C (2013). Blm10 facilitates nuclear import of proteasome core particles. EMBO J, 32(20): 2697–2707
|
194 |
Wei S J, Williams J G, Dang H, Darden T A, Betz B L, Humble M M, Chang F M, Trempus C S, Johnson K, Cannon R E, Tennant R W (2008). Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J Mol Biol, 383(3): 693–712
|
195 |
Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S (2016). Inhibition of proteasome activity induces formation of alternative proteasome complexes. J Biol Chem, 291(25): 13147–13159
|
196 |
Wendler P, Lehmann A, Janek K, Baumgart S, Enenkel C (2004). The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin alphabeta and proteasome functions. J Biol Chem, 279(36): 37751–37762
|
197 |
Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C, Hill C P (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature, 408(6808): 115–120
|
198 |
Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M, Kruger E (2000). Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol, 301(1): 1–9
|
199 |
Wollenberg K, Swaffield J C (2001). Evolution of proteasomal ATPases. Mol Biol Evol, 18(6): 962–974
|
200 |
Worden E J, Padovani C, Martin A (2014). Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol, 21(3): 220–227
|
201 |
Xie Y, Varshavsky A (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA, 98(6): 3056–3061
|
202 |
Yao T, Cohen R E (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419(6905): 403–407
|
203 |
Yao Y, Toth C R, Huang L, Wong M L, Dias P, Burlingame A L, Coffino P, Wang C C (1999). alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem J, 344(Pt 2): 349–358
|
204 |
Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008). Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol, 15(3): 228–236
|
205 |
Yashiroda H, Toda Y, Otsu S, Takagi K, Mizushima T, Murata S (2015). N-terminal alpha7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol, 35(1): 141–152
|
206 |
Yu Y, Smith D M, Kim H M, Rodriguez V, Goldberg A L, Cheng Y (2010). Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J, 29(3): 692–702
|
207 |
Yu Z, Livnat-Levanon N, Kleifeld O, Mansour W, Nakasone M A, Castaneda C A, Dixon E K, Fushman D, Reis N, Pick E, Glickman M H (2015). Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep, 35(3): e00194
|
208 |
Zaiss D M, Standera S, Kloetzel P M, Sijts A J (2002). PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA, 99(22): 14344–14349
|
209 |
Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey P D, Shi Y (2009). Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell, 34(4): 473–484
|
210 |
Zhang Y, Lucocq J M, Yamamoto M, Hayes J D (2007). The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochem J, 408(2): 161–172
|
211 |
Zhu K, Dunner K Jr, McConkey D J (2010). Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene, 29(3): 451–462
|
212 |
Zuhl F, Seemuller E, Golbik R, Baumeister W (1997). Dissecting the assembly pathway of the 20S proteasome. FEBS Lett, 418(1-2): 189–194
|
213 |
Zwickl P, Kleinz J, Baumeister W (1994). Critical elements in proteasome assembly. Nat Struct Biol, 1(11): 765–770
|
214 |
Zwickl P, Ng D, Woo K M, Klenk H P, Goldberg A L (1999). An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem, 274(37): 26008–26014
|
/
〈 | 〉 |