REVIEW

Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells

  • Kyle R. Denton 1 ,
  • Chongchong Xu 2,4 ,
  • Harsh Shah 3 ,
  • Xue-Jun Li , 2,4
Expand
  • 1. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
  • 2. Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL 61107, USA
  • 3. MD program, College of Medicine at Rockford, IL 61107, USA
  • 4. Department of Bioengineering, University of Illinois at Chicago, IL 60607, USA

Received date: 23 May 2016

Accepted date: 26 Jul 2016

Published date: 04 Nov 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects.

METHODS: In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions.

RESULTS: HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects.

CONCLUSIONS: These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.

Cite this article

Kyle R. Denton , Chongchong Xu , Harsh Shah , Xue-Jun Li . Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Frontiers in Biology, 2016 , 11(5) : 339 -354 . DOI: 10.1007/s11515-016-1416-0

Acknowledgments

This work has been supported by the Blazer Foundation and a NIH grant (R21NS089042) to X.J.L.

Compliance with ethics guidelines

Kyle Denton, Chongchong Xu, Harsh Shah, and Xue-Jun Li declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Ben-David U, Kopper O, Benvenisty N (2012). Expanding the boundaries of embryonic stem cells. Cell Stem Cell, 10(6): 666–677

DOI PMID

2
Bilican B, Serio A, Barmada S J, Nishimura A L, Sullivan G J, Carrasco M, Phatnani H P, Puddifoot C A, Story D, Fletcher J, Park I H, Friedman B A, Daley G Q, Wyllie D J, Hardingham G E, Wilmut I, Finkbeiner S, Maniatis T, Shaw C E, Chandran S (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA, 109(15): 5803–5808

DOI PMID

3
Blackstone C (2012). Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci, 35(1): 25–47

DOI PMID

4
Blackstone C, O’Kane C J, Reid E (2011). Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci, 12(1): 31–42

PMID

5
Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286

DOI PMID

6
Chen H, Chan D C (2009). Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176

DOI PMID

7
Claudiani P, Riano E, Errico A, Andolfi G, Rugarli E I (2005). Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res, 309(2): 358–369

DOI PMID

8
Crosby A H, Proukakis C (2002). Is the transportation highway the right road for hereditary spastic paraplegia? Am J Hum Genet, 71(5): 1009–1016

DOI PMID

9
De Vos K J, Grierson A J, Ackerley S, Miller C C (2008). Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 31(1): 151–173

DOI PMID

10
Deluca G C, Ebers G C, Esiri M M (2004). The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol, 30(6): 576–584

DOI PMID

11
Denton K R, Lei L, Grenier J, Rodionov V, Blackstone C, Li X J (2014). Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells, 32(2): 414–423

DOI PMID

12
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221

DOI PMID

13
Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280

DOI PMID

14
Errico A, Ballabio A, Rugarli E I (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet, 11(2): 153–163

DOI PMID

15
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156

DOI PMID

16
Falk J, Rohde M, Bekhite M M, Neugebauer S, Hemmerich P, Kiehntopf M, Deufel T, Hübner C A, Beetz C (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat, 35(4): 497–504

DOI PMID

17
Fan Y, Wali G, Sutharsan R, Bellette B, Crane D I, Sue C M, Mackay-Sim A (2014). Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biol Open, 3(6): 494–502

DOI PMID

18
Fassier C, Hutt J A, Scholpp S, Lumsden A, Giros B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010). Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci, 13(11): 1380–1387

DOI PMID

19
Fink J K (1993). Hereditary Spastic Paraplegia Overview. In: Pagon R A, Adam M P, Ardinger H H, Wallacc S E, Amemiya A, BeauL J H, Bird T D, Fong C T, Mefford H C, Smith R J H, Stephens K, Eds. Gene Reviews [Internet]. Seatlle (WA): University of Washington, Seattle 1993–2016

20
Fink J K (2003). Advances in the hereditary spastic paraplegias. Exp Neurol, 184(Suppl 1): S106–S110

DOI PMID

21
Fink J K (2006). Hereditary spastic paraplegia. Curr Neurol Neurosci Rep, 6(1): 65–76

DOI PMID

22
Fonknechten N, Mavel D, Byrne P, Davoine C S, Cruaud C, Bönsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder J M, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme J F, Weissenbach J, Dürr A, Hazan J (2000). Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet, 9(4): 637–644

DOI PMID

23
Grove E A, Fukuchi-Shimogori T (2003). Generating the cerebral cortical area map. Annu Rev Neurosci, 26(1): 355–380

DOI PMID

24
Guha P, Morgan J W, Mostoslavsky G, Rodrigues N P, Boyd A S (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4): 407–412

DOI PMID

25
Guidubaldi A, Piano C, Santorelli F M, Silvestri G, Petracca M, Tessa A, Bentivoglio A R (2011). Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord, 26(3): 553–556

DOI PMID

26
Hallett P J, Deleidi M, Astradsson A, Smith G A, Cooper O, Osborn T M, Sundberg M, Moore M A, Perez-Torres E, Brownell A L, Schumacher J M, Spealman R D, Isacson O (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16(3): 269–274

DOI PMID

27
Halliwell B (2014). Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J, 37(3): 99–105

PMID

28
Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, Benomar A, Lossos A, Denora P, Fernandez J, Elleuch N, Forlani S, Durr A, Feki I, Hutchinson M, Santorelli F M, Mhiri C, Brice A, Stevanin G (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet, 82(4): 992–1002

DOI PMID

29
Harding A E (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1(8334): 1151–1155

DOI PMID

30
Harding A E (1993). Hereditary spastic paraplegias. Semin Neurol, 13(4): 333–336

DOI PMID

31
Havlicek S, Kohl Z, Mishra H K, Prots I, Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto M C, Aigner S, Sticht H, Groemer T W, Hehr U, Lampert A, Schlötzer-Schrehardt U, Winkler J, Gage F H, Winner B (2014). Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet, 23(10): 2527–2541

DOI PMID

32
Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine C S, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder J M, Prud’homme J F, Brice A, Fontaine B, Heilig B, Weissenbach J (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet, 23(3): 296–303

DOI PMID

33
Hedera P, Eldevik O P, Maly P, Rainier S, Fink J K (2005). Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology, 47(10): 730–734

DOI PMID

34
Hirst J, Borner G H, Edgar J, Hein M Y, Mann M, Buchholz F, Antrobus R, Robinson M S (2013). Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell, 24(16): 2558–2569

DOI PMID

35
Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734

DOI PMID

36
Hollenbeck P J (2005). Mitochondria and neurotransmission: evacuating the synapse. Neuron, 47(3): 331–333

DOI PMID

37
Hu J, Shibata Y, Zhu P P, Voss C, Rismanchi N, Prinz W A, Rapoport T A, Blackstone C (2009). A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell, 138(3): 549–561

DOI PMID

38
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

DOI PMID

39
Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009). ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol, 39(2): 81–89

DOI PMID

40
Kasher P R, De Vos K J, Wharton S B, Manser C, Bennett E J, Bingley M, Wood J D, Milner R, McDermott C J, Miller C C, Shaw P J, Grierson A J (2009). Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem, 110(1): 34–44

DOI PMID

41
Kiskinis E, Eggan K (2010). Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest, 120(1): 51–59

DOI PMID

42
Kiskinis E, Sandoe J, Williams L A, Boulting G L, Moccia R, Wainger B J, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle F T, Davis-Dusenbery B N, Ziller M, Oakley D, Ichida J, Di Costanzo S, Atwater N, Maeder M L, Goodwin M J, Nemesh J, Handsaker R E, Paull D, Noggle S, McCarroll S A, Joung J K, Woolf C J, Brown R H, Eggan K (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 14(6): 781–795

DOI PMID

43
Klemm R W, Norton J P, Cole R A, Li C S, Park S H, Crane M M, Li L, Jin D, Boye-Doe A, Liu T Y, Shibata Y, Lu H, Rapoport T A, Farese R V Jr, Blackstone C, Guo Y, Mak H Y (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Reports, 3(5): 1465–1475

DOI PMID

44
Knott A B, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008). Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci, 9(7): 505–518

DOI PMID

45
Kola I, Landis J (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov, 3(8): 711–715

DOI PMID

46
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein W L, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 12(4): 487–496

DOI PMID

47
Lee H, Shamy G A, Elkabetz Y, Schofield C M, Harrsion N L, Panagiotakos G, Socci N D, Tabar V, Studer L (2007). Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells, 25(8): 1931–1939

DOI PMID

48
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165

DOI PMID

49
Li X J, Du Z W, Zarnowska E D, Pankratz M, Hansen L O, Pearce R A, Zhang S C (2005). Specification of motoneurons from human embryonic stem cells. Nat Biotechnol, 23(2): 215–221

DOI PMID

50
Lindsey J C, Lusher M E, McDermott C J, White K D, Reid E, Rubinsztein D C, Bashir R, Hazan J, Shaw P J, Bushby K M (2000). Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis. J Med Genet, 37(10): 759–765

DOI PMID

51
Ling S C, Polymenidou M, Cleveland D W (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 79(3): 416–438

DOI PMID

52
Liu G H, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W, Wagner U, Kim A, Ren B, Li Y, Goebl A, Kim J, Soligalla R D, Dubova I, Thompson J, Yates J 3rd, Esteban C R, Sancho-Martinez I, Izpisua Belmonte J C (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491(7425): 603–607

DOI PMID

53
Lumb J H, Connell J W, Allison R, Reid E (2012). The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta, 1823(1): 192–197

DOI PMID

54
Lunn M R, Wang C H (2008). Spinal muscular atrophy. Lancet, 371(9630): 2120–2133

DOI PMID

55
Ly CV, Verstreken P (2006) Mitochondria at the synapse. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 12:291–299.

56
Ma L, Hu B, Liu Y, Vermilyea S C, Liu H, Gao L, Sun Y, Zhang X, Zhang S C (2012). Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell, 10(4): 455–464

DOI PMID

57
Magrané J, Cortez C, Gan W B, Manfredi G (2014). Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet, 23(6): 1413–1424

DOI PMID

58
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

DOI PMID

59
Mancuso G, Rugarli E I (2008). A cryptic promoter in the first exon of the SPG4 gene directs the synthesis of the 60-kDa spastin isoform. BMC Biol, 6(1): 31

DOI PMID

60
Manfredi G, Xu Z (2005). Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion, 5(2): 77–87

DOI PMID

61
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638

DOI PMID

62
Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2): 143–148

DOI PMID

63
Miller J D, Ganat Y M, Kishinevsky S, Bowman R L, Liu B, Tu E Y, Mandal P K, Vera E, Shim J W, Kriks S, Taldone T, Fusaki N, Tomishima M J, Krainc D, Milner T A, Rossi D J, Studer L (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 13(6): 691–705

DOI PMID

64
Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Bruckner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B (2016) GSK3ss-dependent dysregulation of neurodevelopment in SPG11-patient iPSC model. Ann Neurol.

65
Montague K, Malik B, Gray A L, La Spada A R, Hanna M G, Szabadkai G, Greensmith L (2014). Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain, 137(Pt 7): 1894–1906

DOI PMID

66
Montenegro G, Rebelo A P, Connell J, Allison R, Babalini C, D’Aloia M, Montieri P, Schüle R, Ishiura H, Price J, Strickland A, Gonzalez M A, Baumbach-Reardon L, Deconinck T, Huang J, Bernardi G, Vance J M, Rogers M T, Tsuji S, De Jonghe P, Pericak-Vance M A, Schöls L, Orlacchio A, Reid E, Züchner S (2012). Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest, 122(2): 538–544

DOI PMID

67
Moss T J, Daga A, McNew J A (2011). Fusing a lasting relationship between ER tubules. Trends Cell Biol, 21(7): 416–423

DOI PMID

68
Murmu R P, Martin E, Rastetter A, Esteves T, Muriel M P, El Hachimi K H, Denora P S, Dauphin A, Fernandez J C, Duyckaerts C, Brice A, Darios F, Stevanin G (2011). Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Mol Cell Neurosci, 47(3): 191–202

DOI PMID

69
Murry C E, Keller G (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4): 661–680

DOI PMID

70
Nadar V C, Ketschek A, Myers K A, Gallo G, Baas P W (2008). Kinesin-5 is essential for growth-cone turning. Curr Biol, 18(24): 1972–1977

DOI PMID

71
Namekawa M, Ribai P, Nelson I, Forlani S, Fellmann F, Goizet C, Depienne C, Stevanin G, Ruberg M, Dürr A, Brice A (2006). SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology, 66(1): 112–114

DOI PMID

72
Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3): 267–280

DOI PMID

73
Niu J, Zhang B, Chen H (2014). Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol Biotechnol, 56(8): 681–688

DOI PMID

74
Novarino G, Fenstermaker A G, Zaki M S, Hofree M, Silhavy J L, Heiberg A D, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama J Y, Abdel-Salam G M, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud I G, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu P S, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa M Y, Schroth J, Spencer E G, Rosti R O, Akizu N, Vaux K K, Johansen A, Koh A A, Megahed H, Durr A, Brice A, Stevanin G, Gabriel S B, Ideker T, Gleeson J G (2014). Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science, 343(6170): 506–511

DOI PMID

75
O’Leary D D, Nakagawa Y (2002). Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol, 12(1): 14–25

DOI PMID

76
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151): 313–317

DOI PMID

77
Pantakani D V, Swapna L S, Srinivasan N, Mannan A U (2008). Spastin oligomerizes into a hexamer and the mutant spastin (E442Q) redistribute the wild-type spastin into filamentous microtubule. J Neurochem, 106(2): 613–624

DOI PMID

78
Park I H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch M W, Cowan C, Hochedlinger K, Daley G Q (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5): 877–886

DOI PMID

79
Park S, Lee K S, Lee Y J, Shin H A, Cho H Y, Wang K C, Kim Y S, Lee H T, Chung K S, Kim E Y, Lim J (2004). Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett, 359(1-2): 99–103

DOI PMID

80
Park S H, Zhu P P, Parker R L, Blackstone C (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest, 120(4): 1097–1110

DOI PMID

81
Pérez-Brangulí F, Mishra H K, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer T W, Schlötzer-Schrehardt U, Winkler J, Winner B (2014). Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet, 23(18): 4859–4874

DOI PMID

82
Perrier A L, Tabar V, Barberi T, Rubio M E, Bruses J, Topf N, Harrison N L, Studer L (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 101(34): 12543–12548

DOI PMID

83
Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S (2012). Mitochondria and Alzheimer’s disease. J Neurol Sci, 322(1-2): 31–34

DOI PMID

84
Polleux F, Dehay C, Goffinet A, Kennedy H (2001). Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb Cortex, 11(11): 1027–1039

DOI PMID

85
Reid E (2003). Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet, 40(2): 81–86

DOI PMID

86
Renvoisé B, Blackstone C (2010). Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol, 20(5): 531–537

DOI PMID

87
Reubinoff B E, Itsykson P, Turetsky T, Pera M F, Reinhartz E, Itzik A, Ben-Hur T (2001). Neural progenitors from human embryonic stem cells. Nat Biotechnol, 19(12): 1134–1140

DOI PMID

88
Roy N S, Cleren C, Singh S K, Yang L, Beal M F, Goldman S A (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 12(11): 1259–1268

DOI PMID

89
Salinas S, Proukakis C, Crosby A, Warner T T (2008). Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol, 7(12): 1127–1138

DOI PMID

90
Schicks J, Synofzik M, Pétursson H, Huttenlocher J, Reimold M, Schöls L, Bauer P (2011). Atypical juvenile parkinsonism in a consanguineous SPG15 family. Mov Disord, 26(3): 564–566

DOI PMID

91
Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman S A (2005). Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol, 196(2): 224–234

DOI PMID

92
Soderblom C, Blackstone C (2006). Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol Ther, 109(1-2): 42–56

DOI PMID

93
Solowska J M, Morfini G, Falnikar A, Himes B T, Brady S T, Huang D, Baas P W (2008). Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci, 28(9): 2147–2157

DOI PMID

94
Stevanin G, Santorelli F M, Azzedine H, Coutinho P, Chomilier J, Denora P S, Martin E, Ouvrard-Hernandez A M, Tessa A, Bouslam N, Lossos A, Charles P, Loureiro J L, Elleuch N, Confavreux C, Cruz V T, Ruberg M, Leguern E, Grid D, Tazir M, Fontaine B, Filla A, Bertini E, Durr A, Brice A (2007). Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet, 39(3): 366–372

DOI PMID

95
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

DOI PMID

96
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

DOI PMID

97
Tarrade A, Fassier C, Courageot S, Charvin D, Vitte J, Peris L, Thorel A, Mouisel E, Fonknechten N, Roblot N, Seilhean D, Diérich A, Hauw J J, Melki J (2006). A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet, 15(24): 3544–3558

DOI PMID

98
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147

DOI PMID

99
Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, Gonz�lez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160

DOI PMID

100
Vidal R, Caballero B, Couve A, Hetz C (2011). Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med, 11(1): 1–12

DOI PMID

101
Walther T C, Farese R V Jr (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 81(1): 687–714

DOI PMID

102
Wang D, Lagerstrom R, Sun C, Bishof L, Valotton P, Götte M (2010). HCA-vision: Automated neurite outgrowth analysis. J Biomol Screen, 15(9): 1165–1170

DOI PMID

103
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R (2013a). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910–918

DOI PMID

104
Wang Z B, Zhang X, Li X J (2013b). Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell Res, 23(3): 378–393

DOI PMID

105
Wilfling F, Wang H, Haas J T, Krahmer N, Gould T J, Uchida A, Cheng J X, Graham M, Christiano R, Fröhlich F, Liu X, Buhman K K, Coleman R A, Bewersdorf J, Farese R V Jr, Walther T C (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell, 24(4): 384–399

DOI PMID

106
Xu C C, Denton K R, Wang Z B, Zhang X, Li X J (2016). Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis Model Mech, 9(1): 39–49

PMID

107
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet, 20(23): 4530–4539

DOI PMID

108
Yan Y, Yang D, Zarnowska E D, Du Z, Werbel B, Valliere C, Pearce R A, Thomson J A, Zhang S C (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6): 781–790

DOI PMID

109
Yang Y M, Gupta S K, Kim K J, Powers B E, Cerqueira A, Wainger B J, Ngo H D, Rosowski K A, Schein P A, Ackeifi C A, Arvanites A C, Davidow L S, Woolf C J, Rubin L L (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6): 713–726

DOI PMID

110
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920

DOI PMID

111
Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park J W, Zhan S, Kronenberg M S, Lichtler A, Liu H X, Chen F P, Yue L, Li X J, Xu R H (2010). Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE, 5(7): e11853

DOI PMID

112
Zhang N, An M C, Montoro D, Ellerby L M (2010). Characterization of Human Huntington’s Disease Cell Model from Induced Pluripotent Stem Cells. PLoS Curr, 2: RRN1193

DOI PMID

113
Zhang S C (2006). Neural subtype specification from embryonic stem cells. Brain Pathol, 16(2): 132–142

DOI PMID

114
Zhang S C, Wernig M, Duncan I D, Brüstle O, Thomson J A (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol, 19(12): 1129–1133

DOI PMID

115
Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber C H, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink J K (2001). Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet, 29(3): 326–331

DOI PMID

116
Zhu P P, Denton K R, Pierson T M, Li X J, Blackstone C (2014). Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet, 23(21): 5638–5648

DOI PMID

117
Zhu P P, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003). Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem, 278(49): 49063–49071

DOI PMID

Outlines

/