REVIEW

Metabolomics in Schizophrenia and Major Depressive Disorder

  • Iva Petrovchich 2 ,
  • Alexandra Sosinsky 3 ,
  • Anish Konde 4 ,
  • Abigail Archibald 5 ,
  • David Henderson 6 ,
  • Mirjana Maletic-Savatic 7 ,
  • Snezana Milanovic , 1
Expand
  • 1. Massachusetts General Hospital, Department of Psychiatry, MGH Clinical Trials Network Institute, MGH Division of Global Psychiatry, MGH Depression Clinical and Research Program, Boston, MA 02114, USA
  • 2. School of Nursing, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
  • 3. Massachusetts General Hospital, Department of Psychiatry, MGH Center for Women’s Mental Health, Boston, MA 02114, USA
  • 4. Louisiana State University Health Science Center, Department of Internal Medicine, Lafayette, LA 70112, USA
  • 5. Massachusetts General Hospital, Department of Psychiatry, MGH Depression Clinical and Research Program, Boston, MA 02114, USA
  • 6. Boston Medical Center, Department of Psychiatry, Boston, MA 02118, USA
  • 7. Baylor College of Medicine, Neurology Research Institute, Houston, TX77030, USA

Received date: 16 Mar 2016

Accepted date: 15 Apr 2016

Published date: 05 Jul 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Defining pathophenotype, a systems level consequence of a disease genotype, together with environmental and stochastic influences, is an arduous task in psychiatry. It is also an appealing goal, given growing need for appreciation of brain disorders biological complexity, aspiration for diagnostic tests development and ambition to identify novel drug targets. Here, we focus on the Schizophrenia and Major Depressive Disorder and highlight recent advances in metabolomics research. As a systems biology tool, metabolomics holds a promise to take part in elucidating interactions between genes and environment, in complex behavioral traits and psychopathology risk translational research.

Cite this article

Iva Petrovchich , Alexandra Sosinsky , Anish Konde , Abigail Archibald , David Henderson , Mirjana Maletic-Savatic , Snezana Milanovic . Metabolomics in Schizophrenia and Major Depressive Disorder[J]. Frontiers in Biology, 2016 , 11(3) : 222 -231 . DOI: 10.1007/s11515-016-1400-8

Acknowledgements

This work was supported by Brain and Behavior Research Foundation 2012 Young Investigator Award (19722) to Dr. S. Milanovic.

Compliance with ethics guidelines

Iva Petrovchich, Alexandra Sosinsky, Anish Konde4, Abigail Archibald, David Henderson, Mirjana Maletic-Savatic and Snezana Milanovic declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Abrusán G (2012). Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct, 7(1): 41

DOI PMID

2
Alkondon M, Pereira E F, Yu P, Arruda E Z, Almeida L E, Guidetti P, Fawcett W P, Sapko M T, Randall W R, Schwarcz R, Tagle D A, Albuquerque E X (2004). Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via α7 nicotinic receptors in the hippocampus. J Neurosci, 24(19): 4635–4648

DOI PMID

3
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27 (21): 3029–3035

4
Andreou D, Söderman E, Axelsson T, Sedvall G C, Terenius L, Agartz I, Jönsson E G (2014). Polymorphisms in genes implicated in dopamine, serotonin and noradrenalin metabolism suggest association with cerebrospinal fluid monoamine metabolite concentrations in psychosis. Behav Brain Funct, 10(1): 26

DOI PMID

5
Appleton K M, Rogers P J, Ness A R (2008). Is there a role for n-3 long-chain polyunsaturated fatty acids in the regulation of mood and behaviour? A review of the evidence to date from epidemiological studies, clinical studies and intervention trials. Nutr Res Rev, 21(1): 13–41

DOI PMID

6
Arai M, Yuzawa H, Nohara I, Ohnishi T, Obata N, Iwayama Y, Haga S, Toyota T, Ujike H, Arai M, Ichikawa T, Nishida A, Tanaka Y, Furukawa A, Aikawa Y, Kuroda O, Niizato K, Izawa R, Nakamura K, Mori N, Matsuzawa D, Hashimoto K, Iyo M, Sora I, Matsushita M, Okazaki Y, Yoshikawa T, Miyata T, Itokawa M (2010). Enhanced carbonyl stress in a subpopulation of schizophrenia. Arch Gen Psychiatry, 67(6): 589–597

DOI PMID

7
Arnold J M, Choi W T, Sreekumar A, Maletić-Savatić M(2015). Analytical strategies for studying stem cell metabolism, Front Biol, 10 (2): 141–153

8
Asberg M, Bertilsson L, Mårtensson B, Scalia-Tomba G P, Thorén P, Träskman-Bendz L (1984). CSF monoamine metabolites in melancholia. ActaPsychiatrScand, 69(3): 201–219

DOI PMID

9
Ashcroft G W, Crawford T B, Eccleston D, Sharman D F, MacDougall E J, Stanton J B, Binns J K (1966). 5-hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet, 2(7472): 1049–1052

PMID

10
Bernstein H G, Bogerts B, Keilhoff G (2005). The many faces of nitric oxide in schizophrenia. A review. Schizophr Res, 78(1): 69–86

DOI PMID

11
Bitanihirwe B K, Woo T U (2011). Oxidative stress in schizophrenia: an integrated approach. NeurosciBiobehav Rev, 35(3): 878–893

DOI PMID

12
Botas A, Campbell H M,Han X , Maletic-Savatic M(2015). Metabolomics of neurodegenerative diseases, Int Rev Neurobiol, 122: 53–80

13
Bowers M BJr (1973). 5-Hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacologia, 28(4): 309–318

DOI PMID

14
Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014). Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron, 81(2): 306–313

DOI PMID

15
Cantoni G L, Mudd S H, Andreoli V (1989). Affective disorders and S-adenosylmethionine: a new hypothesis. Trends Neurosci, 12(9): 319–324

DOI PMID

16
Capuron L, Neurauter G, Musselman D L, Lawson D H, Nemeroff C B, Fuchs D, Miller A H (2003). Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry, 54(9): 906–914

DOI PMID

17
Cherlyn S Y, Woon P S, Liu J J, Ong W Y, Tsai G C, Sim K (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev, 34(6): 958–977

DOI PMID

18
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard F P, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon A M, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan J J, Bouillot M, Sambucy J L, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham P C, Straub R E, Weinberger D R, Cohen N, Cohen D (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A, 99(21): 13675–13680

DOI PMID

19
Craft S, Watson G S (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol, 3(3): 169–178

DOI PMID

20
Domino E F, Krause R R (1974). Free and bound serum tryptophan in drug-free normal controls and chronic schizophrenic patients. Biol Psychiatry, 8(3): 265–279

PMID

21
Erhardt S, Blennow K, Nordin C, Skogh E, Lindström L H, Engberg G (2001). Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett, 313(1-2): 96–98

DOI PMID

22
Evrony G D, Lee E, Mehta B K, Benjamini Y, Johnson R M, Cai X, Yang L, Haseley P, Lehmann H S, Park P J, Walsh C A (2015). Cell lineage analysis in human brain using endogenous retroelements. Neuron, 85(1): 49–59

DOI PMID

23
Ferentinos P, Dikeos D (2012). Genetic correlates of medical comorbidity associated with schizophrenia and treatment with antipsychotics. Curr Opin Psychiatry, 25(5): 381–390

DOI PMID

24
Fernández-Novoa L, Cacabelos R (2001). Histamine function in brain disorders. Behav Brain Res, 124(2): 213–233

DOI PMID

25
Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, Nishikiori M, Seki A, Ichiba H, Watanabe Y, Hongo S, Utsunomiya M, Nakatani M, Sadamoto K, Yoshio T (2014). Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One, 9(7): e101652

DOI PMID

26
Garelis E, Gillin J C, Wyatt R J, Neff N (1975). Elevated blood serotonin concentration in unmedicated chronic schizophrenic patients. Am J Psychiatry, 132(2): 184–186

DOI PMID

27
Gattaz W F, Brunner J, Schmitt A, Maras A (1994). Accelerated breakdown of membrane phospholipids in schizophrenia—implications for the hypofrontality hypothesis. Fortschr Neurol Psychiatr, 62(12): 489–496

DOI PMID

28
Gattaz W F, Hübner C V, Nevalainen T J, Thuren T, Kinnunen P K (1990). Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry, 28(6): 495–501

PMID

29
Gattaz W F, Köllisch M, Thuren T, Virtanen J A, Kinnunen P K J (1987). Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry, 22(4): 421–426

DOI PMID

30
Gillin J C, Kaplan J A, Wyatt R J (1976). Clinical effects of tryptophan in chronic schizophrenic patients. Biol Psychiatry, 11(5): 635–639

PMID

31
Glinsky G V (2015). Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol, 7(6): 1432–1454

DOI PMID

32
Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M, Ruiz V, Steullet P, Tosic M, Werge T, Cuénod M, Do K Q (2007). Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci U S A, 104(42): 16621–16626

DOI PMID

33
Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003). Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry, 60(6): 572–576

DOI PMID

34
Hashimoto K, Shimizu E, Iyo M (2005). Dysfunction of glia-neuron communication in pathophysiology of schizophrenia. Curr Psychiatry Rev, 1(2): 151–163

DOI

35
He Y, Yu Z, Giegling I, Xie L, Hartmann A M, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D (2012). Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry, 2(8): e149

DOI PMID

36
Hernández-Benítez R, Vangipuram S D, Ramos-Mandujano G, Lyman W D, Pasantes-Morales H (2013). Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci, 35(1): 40–49

DOI PMID

37
Hilmas C, Pereira E F, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque E X (2001). The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci, 21(19): 7463–7473

PMID

38
Hosak L (2013). New findings in the genetics of schizophrenia. World J Psychiatry, 3(3): 57–61

DOI PMID

39
Inoue K, Okamoto M, Shibato J, Lee M C, Matsui T, Rakwal R, Soya H (2015). Long-term mild, rather than intense, exercise enhances adult hippocampal neurogenesis and greatly changes the transcriptomic profile of the hippocampus. PLoS One, 10(6): e0128720

DOI PMID

40
Iwayama Y, Hattori E, Maekawa M, Yamada K, Toyota T, Ohnishi T, Iwata Y, Tsuchiya K J, Sugihara G, Kikuchi M, Hashimoto K, Iyo M, Inada T, Kunugi H, Ozaki N, Iwata N, Nanko S, Iwamoto K, Okazaki Y, Kato T, Yoshikawa T (2010). Association analyses between brain-expressed fatty-acid binding protein (FABP) genes and schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 153B(2): 484–493

PMID

41
Jackman H, Luchins D, Meltzer H Y (1983). Platelet serotonin levels in schizophrenia: relationship to race and psychopathology. Biol Psychiatry, 18(8): 887–902

PMID

42
Joseph M H, Owen F, Baker H F, Bourne R C (1977). Platelet serotonin concentration and monoamine oxidase activity in unmedicated chronic schizophrenic and in schizoaffective patients. Psychol Med, 7(1): 159–162

DOI PMID

43
Kaddurah-Daouk R, Yuan P, Boyle S H, Matson W, Wang Z, Zeng Z B, Zhu H, Dougherty G G, Yao J K, Chen G, Guitart X, Carlson P J, Neumeister A, Zarate C, Krishnan R R, Manji H K, Drevets W (2012). Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep, 2(667): 667

PMID

44
Kempf L, Nicodemus K K, Kolachana B, Vakkalanka R, Verchinski B A, Egan M F, Straub R E, Mattay V A, Callicott J H, Weinberger D R, Meyer-Lindenberg A (2008). Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function. PLoS Genet, 4(11): e1000252

DOI PMID

45
Kolakowska T, Molyneux S G (1987). Platelet serotonin concentration in schizophrenic patients. Am J Psychiatry, 144(2): 232–234

DOI PMID

46
Kotronen A, Velagapudi V R, Yetukuri L, Westerbacka J, Bergholm R, Ekroos K, Makkonen J, Taskinen M R, Oresic M, Yki-Järvinen H (2009). Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia, 52(4): 684–690

DOI PMID

47
Kotronen A, Yki-Järvinen H (2008). Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol, 28(1): 27–38

DOI PMID

48
Lee L H, Shui G, Farooqui A A, Wenk M R, Tan C H, Ong W Y (2009). Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids? Int J Neuropsychopharmacol, 12(7): 953–964

DOI PMID

49
Liu H, Heath S C, Sobin C, Roos J L, Galke B L, Blundell M L, Lenane M, Robertson B, Wijsman E M, Rapoport J L, Gogos J A, Karayiorgou M (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci U S A, 99(6): 3717–3722

DOI PMID

50
Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G (2015). Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res, 14(5): 2322–2330

DOI PMID

51
Luykx J J, Bakker S C, Lentjes E, Neeleman M, Strengman E, Mentink L, DeYoung J, de Jong S, Sul J H, Eskin E, van Eijk K, van Setten J, Buizer-Voskamp J E, Cantor R M, Lu A, van Amerongen M, van Dongen E P, Keijzers P, Kappen T, Borgdorff P, Bruins P, Derks E M, Kahn R S, Ophoff R A (2014). Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Mol Psychiatry, 19(2): 228–234

DOI PMID

52
Madeira C, Freitas M E, Vargas-Lopes C, Wolosker H, Panizzutti R (2008). Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res, 101(1-3): 76–83

DOI PMID

53
Maekawa M, Owada Y, Yoshikawa T (2011). Role of polyunsaturated fatty acids and fatty acid binding protein in the pathogenesis of schizophrenia. Curr Pharm Des, 17(2): 168–175

DOI PMID

54
Maletić-Savatić M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djurić P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73:389–401

55
Manowitz P, Gilmour D G, Racevskis J (1973). Low plasma tryptophan levels in recently hospitalized schizophrenics. Biol Psychiatry, 6(2): 109–118

PMID

56
Martins-de-Souza D (2014). Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues Clin Neurosci, 16(1): 63–73

PMID

57
Middleton F A, Mirnics K, Pierri J N, Lewis D A, Levitt P (2002). Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci, 22(7): 2718–2729

PMID

58
Milanovic S M, Thermenos H W, Goldstein J M, Brown A, Gabrieli S W, Makris N, Tsuang M T, Buka S L, Seidman L J(2011). Medial prefrontal cortical activation during working memory differentiates schizophrenia and bipolar psychotic patients: a pilot fMRI study. Schizophr Res, 129(2-3): 208–210

59
Moon M L, Joesting J J, Lawson M A, Chiu G S, Blevins N A, Kwakwa K A, Freund G G (2014). The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice. Metabolism, 63(9): 1131–1140

DOI PMID

60
Moreno F A, Parkinson D, Palmer C, Castro W L, Misiaszek J, El Khoury A, Mathé A A, Wright R, Delgado P L (2010). CSF neurochemicals during tryptophan depletion in individuals with remitted depression and healthy controls. Eur Neuropsychopharmacol, 20(1): 18–24

DOI PMID

61
Mück-Seler D, Jakovljević M, Deanović Z (1988). Time course of schizophrenia and platelet 5-HT level. Biol Psychiatry, 23(3): 243–251

DOI PMID

62
Nichenametla S N, Ellison I, Calcagnotto A, Lazarus P, Muscat J E, Richie J P Jr (2008). Functional significance of the GAG trinucleotide-repeat polymorphism in the gene for the catalytic subunit of gamma-glutamylcysteine ligase. Free Radic Biol Med, 45(5): 645–650

DOI PMID

63
Nunes A F, Amaral J D, Lo A C, Fonseca M B, Viana R J, Callaerts-Vegh Z, D’Hooge R, Rodrigues C M (2012). TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol Neurobiol, 45(3): 440–454

DOI PMID

64
Olney J W, Farber N B (1995). Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry, 52(12): 998–1007

DOI PMID

65
Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni S E, Saarni S I, Lönnqvist J, Sysi-Aho M, Hyötyläinen T, Perälä J, Suvisaari J (2011). Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med, 3(3): 19

DOI PMID

66
Paoletti L, Elena C, Domizi P, Banchio C (2011). Role of phosphatidylcholine during neuronal differentiation. IUBMB Life, 63(9): 714–720

PMID

67
Park H R, Kim J Y, Park K Y, Lee J (2011). Lipotoxicity of palmitic Acid on neural progenitor cells and hippocampal neurogenesis. Toxicol Res, 27(2): 103–110

DOI PMID

68
Payne I R, Walsh E M, Whittenburg E J (1974). Relationship of dietary tryptophan and niacin to tryptophan metabolism in schizophrenics and nonschizophrenics. Am J Clin Nutr, 27(6): 565–571

PMID

69
Peterson C, Vannucci M, KarakasC, Choi W, Ma L, Maletic-Savatic M(2013). Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors. Stat Interface, 6(4): 547–558

70
Prell G D, Green J P, Kaufmann C A, Khandelwal J K, Morrishow A M, Kirch D G, Linnoila M, Wyatt R J (1995). Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res, 14(2): 93–104

DOI PMID

71
Raffa M, Mechri A, Othman L B, Fendri C, Gaha L, Kerkeni A (2009). Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry, 33(7): 1178–1183

DOI PMID

72
Ramos-Loyo J, Medina-Hernández V, Estarrón-Espinosa M, Canales-Aguirre A, Gómez-Pinedo U, Cerdán-Sánchez L F (2013). Sex differences in lipid peroxidation and fatty acid levels in recent onset schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 44: 154–161

DOI PMID

73
Reiter R J, Tan D X, Jou M J, Korkmaz A, Manchester L C, Paredes S D (2008). Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinol Lett, 29(4): 391–398

PMID

74
Santin L J, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E, Sánchez-López J, Riquelme R, Varela-Nieto I, de la Villa P, Suardíaz M, Chun J, De Fonseca F R, Estivill-Torrús G (2009). Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav, 8(8): 772–784

DOI PMID

75
Santos-Soto I J, Chorna N, Carballeira N M, Vélez-Bartolomei J G, Méndez-Merced A T, Chornyy A P, Peña de Ortiz S (2013). Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex. PLoS One, 8(12): e81459

DOI PMID

76
Schell M J, Brady R O Jr, Molliver M E, Snyder S H (1997). D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci, 17(5): 1604–1615

PMID

77
Schwarcz R, Rassoulpour A, Wu H Q, Medoff D, Tamminga C A, Roberts R C (2001). Increased cortical kynurenate content in schizophrenia. Biol Psychiatry, 50(7): 521–530

DOI PMID

78
Sekar A, Bialas A R, de Rivera H, Davis A, Hammond T R, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose S A, Handsaker R E, Daly M J, Carroll M C, Stevens B, McCarroll S A, and the Schizophrenia Working Group of the Psychiatric Genomics Consortium (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589): 177–183

DOI PMID

79
Shimazu T, Hirschey M D, Newman J, He W, Shirakawa K, Le Moan N, Grueter C A, Lim H, Saunders L R, Stevens R D, Newgard C B, Farese R VJr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339(6116): 211–214

DOI PMID

80
Singer T, McConnell M J, Marchetto M C, Coufal N G, Gage F H (2010). LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci, 33(8): 345–354

DOI PMID

81
Smith Q R (2000). Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr, 130(4SSuppl): 1016S–1022S

PMID

82
Smoller J W (2016). The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 41(1): 297–319

DOI PMID

83
Stahl S M, Woo D J, Mefford I N, Berger P A, Ciaranello R D (1983). Hyperserotonemia and platelet serotonin uptake and release in schizophrenia and affective disorders. Am J Psychiatry, 140(1): 26–30

DOI PMID

84
Steffens D C, Jiang W, Krishnan K R, Karoly E D, Mitchell M W, O’Connor C M, Kaddurah-Daouk R (2010). Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol, 23(2): 138–146

DOI PMID

85
Stone J M, Morrison P D, Pilowsky L S (2007). Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol, 21(4): 440–452

DOI PMID

86
Stone T W (1993). Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev, 45(3): 309–379

PMID

87
Stone W S, Faraone S V, Su J, Tarbox S I, Van Eerdewegh P, Tsuang M T (2004). Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet, 127B(1): 5–10

DOI PMID

88
Tandon N, Bolo N R, Sanghavi K, Mathew I T, Francis A N, Stanley J A, Keshavan M S (2013). Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophr Res, 148(1-3): 59–66

DOI PMID

89
Tortorella A, Monteleone P, Fabrazzo M, Viggiano A, De Luca L, Maj M (2001). Plasma concentrations of amino acids in chronic schizophrenics treated with clozapine. Neuropsychobiology, 44(4): 167–171

DOI PMID

90
UptonK r,GerhardtD J, Jesuadian J S, Richardson S R, Sánchez-Luque F J, Bodea G O, Ewing A D, Salvador-PalomequeC,van der Knaap M S, Brennan P M, Vanderver A, Faulkner G J(2015). Ubiquitous L1 mosaicism in hippocampal neurons. Cell, 161(2): 228–239

91
Vaz A R, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D (2015). Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol, 51(3): 864–877

DOI PMID

92
Vingara L K, Yu H J,Wagshul M E , Serafin D,Christodoulou C , Pelczer I, Krupp L B, Maletić-Savatić M(2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage, 82: 586–594

93
Wang S M, Han C, Lee S J, Patkar A A, Masand P S, Pae C U (2014). A review of current evidence for acetyl-l-carnitine in the treatment of depression. J Psychiatr Res, 53: 30–37

DOI PMID

94
Wang Z J, Li G M, Tang W L, Yin M (2006). Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin, 27(2): 145–150

DOI PMID

95
Weber H, Klamer D, Freudenberg F, Kittel-Schneider S, Rivero O, Scholz C J, Volkert J, Kopf J, Heupel J, Herterich S, Adolfsson R, Alttoa A, Post A, Grußendorf H, Kramer A, Gessner A, Schmidt B, Hempel S, Jacob C P, Sanjuán J, Moltó M D, Lesch K P, Freitag C M, Kent L, Reif A (2014). The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis. Eur Neuropsychopharmacol, 24(1): 65–85

DOI PMID

96
Whitfield-Gabrieli S, Thermenos H W, Milanovic S, Tsuang M T,Faraone S V, McCarley R W, Shenton M E, Green A I, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli J D, Seidman L J (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 106(4): 1279–1284

97
Wichers M C, Koek G H, Robaeys G, Verkerk R, Scharpé S, Maes M (2005). IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry, 10(6): 538–544

DOI PMID

98
Woo H I, Chun M R, Yang J S, Lim S W, Kim M J, Kim S W, Myung W J, Kim D K, Lee S Y (2015). Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS Neurosci Ther, 21(5): 417–424

DOI PMID

99
Wood P L (2014). Accumulation of N-acylphosphatidylserines and N-acylserines in the frontal cortex in schizophrenia. Neurotransmitter (Houst), 1(1): e263

PMID

100
Wood P L, Holderman N R (2015). Dysfunctional glycosynapses in schizophrenia: disease and regional specificity. Schizophr Res, 166(1-3): 235–237

DOI PMID

101
Wyatt R J, Vaughan T, Galanter M, Kaplan J, Green R (1972). Behavioral changes of chronic schizophrenic patients given L-5-hydroxytryptophan. Science, 177(4054): 1124–1126

DOI PMID

102
Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L (2011). Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res, 10(12): 5433–5443

DOI PMID

103
Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, Zhao A, Wang P, Yang P, Wu J, Feng G, He L, Jia W, Wan C (2013). Potential metabolite markers of schizophrenia. Mol Psychiatry, 18(1): 67–78

DOI PMID

104
Yanik M, Vural H, Kocyigit A, Tutkun H, Zoroglu S S, Herken H, Savaş H A, Köylü A, Akyol O (2003). Is the arginine-nitric oxide pathway involved in the pathogenesis of schizophrenia? Neuropsychobiology, 47(2): 61–65

DOI PMID

105
Yao J K, Dougherty G GJr, Reddy R D, Keshavan M S, Montrose D M, Matson W R, Rozen S, Krishnan R R, McEvoy J, Kaddurah-Daouk R (2010). Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry, 15(9): 938–953

DOI PMID

106
Yao J K, Reddy R (2011). Oxidative stress in schizophrenia: pathogenetic and therapeutic implications. Antioxid Redox Signal, 15(7): 1999–2002

DOI PMID

107
Zheng P, Gao H C, Li Q, Shao W H, Zhang M L, Cheng K, Yang Y, Fan S H, Chen L, Fang L, Xie P (2012). Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J Proteome Res, 11(3): 1741–1748

DOI PMID

108
Zheng P, Wang Y, Chen L, Yang D, Meng H, Zhou D, Zhong J, Lei Y, Melgiri N D, Xie P (2013). Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics, 12(1): 207–214

DOI PMID

Outlines

/