REVIEW

The epigenetics of CHARGE syndrome

  • Nina K. Latcheva 1,2 ,
  • Rupa Ghosh 1 ,
  • Daniel R. Marenda , 1,3
Expand
  • 1. Department of Biology, Drexel University, Philadelphia, PA 19104, USA
  • 2. Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
  • 3. Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA

Received date: 31 Mar 2016

Accepted date: 15 Apr 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In biology, we continue to appreciate the fact that the DNA sequence alone falls short when attempting to explain the intricate inheritance patterns for complex traits. This is particularly true for human disorders that appear to have simple genetic causes. The study of epigenetics, and the increased access to the epigenetic profiles of different tissues has begun to shed light on the genetic complexity of many basic biological processes, both physiological and pathological. Epigenetics refers to heritable changes in gene expression that are not due to alterations in the DNA sequence. Various mechanisms of epigenetic regulation exist, including DNA methylation and histone modification. The identification, and increased understanding of key players and mechanisms of epigenetic regulation have begun to provide significant insight into the underlying origins of various human genetic disorders. One such disorder is CHARGE syndrome (OMIM 214800), which is a leading cause of deaf-blindness worldwide. A majority of CHARGE syndrome cases are caused by haploinsufficiency for the CHD7 gene, which encodes an ATP-dependent chromatin remodeling protein involved in the epigenetic regulation of gene expression. The CHD7 protein has been highly conserved throughout evolution, and research into the function of CHD7 homologs in multiple model systems has increased our understanding of this family of proteins, and epigenetic mechanisms in general. Here we provide a review of CHARGE syndrome, and discuss the epigenetic functions of CHD7 in humans and CHD7 homologs in model organisms.

Cite this article

Nina K. Latcheva , Rupa Ghosh , Daniel R. Marenda . The epigenetics of CHARGE syndrome[J]. Frontiers in Biology, 2016 , 11(2) : 85 -95 . DOI: 10.1007/s11515-016-1398-y

Acknowledgments

We would like to thank Edward A. Waddell and Dr. Faith Liebl for critical reading of the manuscript, the CHARGE syndrome Foundation, and members of the CHARGE syndrome Foundation scientific advisory board for their work on CHARGE. Work in the Marenda laboratory is supported by a grant from the National Science Foundation (IOS 1256114) to DRM.
Nina Latcheva, Rupa Ghosh, and Daniel Marenda declare that they have no conflict of interest.
1
Aalfs J D, Kingston R E (2000). What does ʻchromatin remodelingʼ mean? Trends Biochem Sci, 25(11): 548–555

DOI

2
Allen M D, Religa T L, Freund S M, Bycroft M (2007). Solution structure of the BRK domains from CHD7. J Mol Biol, 371(5): 1135–1140

DOI

3
Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636

DOI

4
Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang C P, Zhao Y, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463(7283): 958–962

DOI

5
Balasubramanian D, Akhtar-Zaidi B, Song L, Bartels C F, Veigl M, Beard L, Myeroff L, Guda K, Lutterbaugh J, Willis J, Crawford G E, Markowitz S D, Scacheri P C (2012). H3K4me3 inversely correlates with DNA methylation at a large class of non-CpG-island-containing start sites. Genome Med, 4(5): 47

DOI

6
Balow S A, Pierce L X, Zentner G E, Conrad P A, Davis S, Sabaawy H E, McDermott B MJr, Scacheri P C (2013). Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome. Dev Biol, 382(1): 57–69

DOI

7
Basson M A, van Ravenswaaij-Arts C (2015). Functional Insights into Chromatin remodelling from studies on CHARGE syndrome. Trends Genet, 31(10): 600–611

DOI

8
Blake K D, Hartshorne T S, Lawand C, Dailor A N, Thelin J W (2008). Cranial nerve manifestations in CHARGE syndrome. Am J Med Genet A, 146A(5): 585–592

DOI

9
Blake K D, Prasad C (2006). CHARGE syndrome. Orphanet J Rare Dis, 1(1): 34

DOI

10
Bosman E A, Penn A C, Ambrose J C, Kettleborough R, Stemple D L, Steel K P (2005). Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet, 14(22): 3463–3476

DOI

11
Bouazoune K, Kingston R E (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA, 109(47): 19238–19243

DOI

12
Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 5(2): 158–163

DOI

13
Cavalli G, Paro R (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science, 286(5441): 955–958

DOI

14
Daubresse G, Deuring R, Moore L, Papoulas O, Zakrajsek I, Waldrip W R, Scott M P, Kennison J A, Tamkun J W (1999). The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development, 126(6): 1175–1187

15
de Lonlay-Debeney P, Cormier-Daire V, Amiel J, Abadie V, Odent S, Paupe A, Couderc S, Tellier A L, Bonnet D, Prieur M, Vekemans M, Munnich A, Lyonnet S (1997). Features of DiGeorge syndrome and CHARGE association in five patients. J Med Genet, 34(12): 986–989

DOI

16
Dorighi K M, Tamkun J W (2013). The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development, 140(20): 4182–4192

DOI

17
Engelen E, Akinci U, Bryne J C, Hou J, Gontan C, Moen M, Szumska D, Kockx C, van Ijcken W, Dekkers D H, Demmers J, Rijkers E J, Bhattacharya S, Philipsen S, Pevny L H, Grosveld F G, Rottier R J, Lenhard B, Poot R A (2011). Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat Genet, 43(6): 607–611

DOI

18
Fasulo B, Deuring R, Murawska M, Gause M, Dorighi K M, Schaaf C A, Dorsett D, Brehm A, Tamkun J W (2012). The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet, 8(8): e1002878

DOI

19
Feng W, Khan M A, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, Liu H K (2013). The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell, 13(1): 62–72

DOI

20
Feng W, Liu H K (2013). Epigenetic regulation of neuronal fate determination: the role of CHD7. Cell Cycle, 12(24): 3707–3708

DOI

21
Fraga M F, Ballestar E, Paz M F, Ropero S, Setien F, Ballestar M L, Heine-Suner D, Cigudosa J C, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector T D, Wu Y Z, Plass C, Esteller M (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 102(30): 10604–10609

DOI

22
Gangaraju V K, Bartholomew B (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat Res, 618(1–2): 3–17

DOI

23
Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2007). CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet, 80(5): 957–965

DOI

24
Ghosh R, Vegesna S, Safi R, Bao H, Zhang B, Marenda D R, Liebl F L (2014). Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction. PLoS ONE, 9(11): e113494

DOI

25
Gregory L C, Gevers E F, Baker J, Kasia T, Chong K, Josifova D J, Caimari M, Bilan F, McCabe M J, Dattani M T (2013). Structural pituitary abnormalities associated with CHARGE syndrome. J Clin Endocrinol Metab, 98(4): E737–E743

DOI

26
He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, Clavairoly A, Frah M, Wang H, He X, Hmidan H, Jones B V, Witte D, Zalc B, Zhou X, Choo D I, Martin D M, Parras C, Lu Q R (2016). Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci, doi: 10.1038/nn.4258

27
Hurd E A, Adams M E, Layman W S, Swiderski D L, Beyer L A, Halsey K E, Benson J M, Gong T W, Dolan D F, Raphael Y, Martin D M (2011). Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res, 282(1–2): 184–195

DOI

28
Hurd E A, Capers P L, Blauwkamp M N, Adams M E, Raphael Y, Poucher H K, Martin D M (2007). Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome, 18(2): 94–104

DOI

29
Hurd E A, Micucci J A, Reamer E N, Martin D M (2012). Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev, 129(9–12): 308–323

DOI

30
Hurd E A, Poucher H K, Cheng K, Raphael Y, Martin D M (2010). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18): 3139–3150

DOI

31
Jacobs-McDaniels N L, Albertson R C (2011). Chd7 plays a critical role in controlling left-right symmetry during zebrafish somitogenesis. Dev Dyn, 240(10): 2272–2280

DOI

32
Janssen N, Bergman J E, Swertz M A, Tranebjaerg L, Lodahl M, Schoots J, Hofstra R M, van Ravenswaaij-Arts C M, Hoefsloot L H (2012). Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat, 33(8): 1149–1160

DOI

33
Jongmans M C, Admiraal R J, van der Donk K P, Vissers L E, Baas A F, Kapusta L, van Hagen J M, Donnai D, de Ravel T J, Veltman J A, Geurts van Kessel A, De Vries B B, Brunner H G, Hoefsloot L H, van Ravenswaaij C M (2006). CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet, 43(4): 306–314

DOI

34
Jongmans M C, Hoefsloot L H, van der Donk K P, Admiraal R J, Magee A, van de Laar I, Hendriks Y, Verheij J B, Walpole I, Brunner H G, van Ravenswaaij C M (2008). Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability. Am J Med Genet A, 146A(1): 43–50

DOI

35
Kaminsky Z A, Tang T, Wang S C, Ptak C, Oh G H, Wong A H, Feldcamp L A, Virtanen C, Halfvarson J, Tysk C, McRae A F, Visscher P M, Montgomery G W, Gottesman I I, Martin N G, Petronis A (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 41(2): 240–245

DOI

36
Kim K H, Roberts C W (2013). CHD7 in charge of neurogenesis. Cell Stem Cell, 13(1): 1–2

DOI

37
Kirmizis A, Santos-Rosa H, Penkett C J, Singer M A, Vermeulen M, Mann M, Bahler J, Green R D, Kouzarides T (2007). Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 449(7164): 928–932

DOI

38
Kita Y, Nishiyama M, Nakayama K I (2012). Identification of CHD7S as a novel splicing variant of CHD7 with functions similar and antagonistic to those of the full-length CHD7L. Genes Cells, 17(7): 536–547

DOI

39
Kornberg R D, Lorch Y (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98(3): 285–294

DOI

40
Kosaki K (2011). Role of rare cases in deciphering the mechanisms of congenital anomalies: CHARGE syndrome research. Congenit Anom (Kyoto), 51(1): 12–15

DOI

41
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705

DOI

42
Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 131(4): 822–822.e1

DOI

43
Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 128(4): 802

DOI

44
Lalani S R, Safiullah A M, Fernbach S D, Harutyunyan K G, Thaller C, Peterson L E, McPherson J D, Gibbs R A, White L D, Hefner M, Davenport S L, Graham J MJr, Bacino C A, Glass N L, Towbin J A, Craigen W J, Neish S R, Lin A E, Belmont J W (2006). Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet, 78(2): 303–314

DOI

45
Layman W S, Hurd E A, Martin D M (2011). Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome. Hum Mol Genet, 20(16): 3138–3150

DOI

46
Layman W S, McEwen D P, Beyer L A, Lalani S R, Fernbach S D, Oh E, Swaroop A, Hegg C C, Raphael Y, Martens J R, Martin D M (2009). Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet, 18(11): 1909–1923

DOI

47
Melicharek D, Shah A, DiStefano G, Gangemi A J, Orapallo A, Vrailas-Mortimer A D, Marenda D R (2008). Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics, 180(4): 2095–2110

DOI

48
Melicharek D J, Ramirez L C, Singh S, Thompson R, Marenda D R (2010). Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet, 19(21): 4253–4264

DOI

49
Micucci J A, Layman W S, Hurd E A, Sperry E D, Frank S F, Durham M A, Swiderski D L, Skidmore J M, Scacheri P C, Raphael Y, Martin D M (2014). CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet, 23(2): 434–448

DOI

50
Mueller-Planitz F, Klinker H, Ludwigsen J, Becker P B (2013). The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat Struct Mol Biol, 20(1): 82–89

DOI

51
Papp B, Muller J (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev, 20(15): 2041–2054

DOI

52
Paro R, Strutt H, Cavalli G (1998). Heritable chromatin states induced by the Polycomb and trithorax group genes. Novartis Found Symp, 214: 51–61; discussion 61–56, 104–113

53
Patten S A, Jacobs-McDaniels N L, Zaouter C, Drapeau P, Albertson R C, Moldovan F (2012). Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS ONE, 7(2): e31650

DOI

54
Petruk S, Sedkov Y, Johnston D M, Hodgson J W, Black K L, Kovermann S K, Beck S, Canaani E, Brock H W, Mazo A (2012). TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell, 150(5): 922–933

DOI

55
Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel J, Hertz-Pannier L, Bertrand A M, Lyonnet S, Rappaport R, Netchine I (2005). CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab, 90(10): 5621–5626

DOI

56
Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668

DOI

57
Richmond T J, Davey C A (2003). The structure of DNA in the nucleosome core. Nature, 423(6936): 145–150

DOI

58
Sanlaville D, Verloes A (2007). CHARGE syndrome: an update. Eur J Hum Genet, 15(4): 389–399

DOI

59
Santoro R, Li J, Grummt I (2002). The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet, 32(3): 393–396

DOI

60
Schnetz M P, Bartels C F, Shastri K, Balasubramanian D, Zentner G E, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, Crawford G E, Scacheri P C (2009). Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res, 19(4): 590–601

DOI

61
Schnetz M P, Handoko L, Akhtar-Zaidi B, Bartels C F, Pereira C F, Fisher A G, Adams D J, Flicek P, Crawford G E, Laframboise T, Tesar P, Wei C L, Scacheri P C (2010). CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet, 6(7): e1001023

DOI

62
Souriau J, Gimenes M, Blouin C, Benbrik I, Benbrik E, Churakowskyi A, Churakowskyi B (2005). CHARGE syndrome: developmental and behavioral data. Am J Med Genet A, 133A(3): 278–281

DOI

63
Srinivasan S, Armstrong J A, Deuring R, Dahlsveen I K, McNeill H, Tamkun J W (2005). The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development, 132(7): 1623–1635

DOI

64
Srinivasan S, Dorighi K M, Tamkun J W (2008). Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet, 4(10): e1000217

DOI

65
Tellier A L, Cormier-Daire V, Abadie V, Amiel J, Sigaudy S, Bonnet D, de Lonlay-Debeney P, Morrisseau-Durand M P, Hubert P, Michel J L, Jan D, Dollfus H, Baumann C, Labrune P, Lacombe D, Philip N, LeMerrer M, Briard M L, Munnich A, Lyonnet S (1998). CHARGE syndrome: report of 47 cases and review. Am J Med Genet, 76(5): 402–409

DOI

66
Terriente-Felix A, Molnar C, Gomez-Skarmeta J L, de Celis J F (2011). A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression. Dev Biol, 350(2): 382–392

DOI

67
Therrien M, Morrison D K, Wong A M, Rubin G M (2000). A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics, 156(3): 1231–1242

68
Torres-Padilla M E, Parfitt D E, Kouzarides T, Zernicka-Goetz M (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445(7124): 214–218

DOI

69
Vissers L E, van Ravenswaaij C M, Admiraal R, Hurst J A, de Vries B B, Janssen I M, van der Vliet W A, Huys E H, de Jong P J, Hamel B C, Schoenmakers E F, Brunner H G, Veltman J A, van Kessel A G (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet, 36(9): 955–957

DOI

70
Workman J L (2006). Nucleosome displacement in transcription. Genes Dev, 20(15): 2009–2017

DOI

71
Zentner G E, Hurd E A, Schnetz M P, Handoko L, Wang C, Wang Z, Wei C, Tesar P J, Hatzoglou M, Martin D M, Scacheri P C (2010a). CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet, 19(18): 3491–3501

DOI

72
Zentner G E, Layman W S, Martin D M, Scacheri P C (2010b). Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A, 152A(3): 674–686

DOI

Outlines

/