RESEARCH ARTICLE

Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach

  • B. Senthilkumar ,
  • D. Meshachpaul ,
  • Rao Sethumadhavan ,
  • R. Rajasekaran
Expand
  • School of Biosciences and Technology, Bioinformatics Division, VIT University, Vellore 632014, Tamil Nadu, India

Received date: 26 Oct 2015

Accepted date: 04 Dec 2015

Published date: 26 Jan 2016

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Biocatalysts are intrinsically reactive and hence their operational stability is of vital significance for any bioprocess. The setback in biocatalyst stability has been tackled from diverse prospects. Inherently, stable biocatalysts are markedly realized and a regular attempt is being made to seek out new organisms that harbor them. Here, we analyzed the industrial biocatalyst lipase A (Native) of Bacillus subtilis and its six thermostable mutants (2M, 3M, 4M, 6M, 9M and 12M) computationally using conformational sampling technique. Consequently, the various structural events deciphering thermostability like root mean square deviation, root mean square fluctuation, radius of gyration and polar surface area showed mutant 12M to be highly stable with statistical validation. Besides, static model analysis involving intra-molecular interactions, secondary structure, solvent accessibility, hydrogen bond pattern, simulated thermal denaturation and desolvation energy also supported 12M comparatively. Of note, the presence of high secondary structural rigidity and hydrogen bonds increased thermostability and functionality of 12M, thus selecting it as a best template for designing thermostable lipases in future. Also, this study has a significant implication toward a better understanding of conformational sampling in enzyme catalysis and enzyme engineering.

Cite this article

B. Senthilkumar , D. Meshachpaul , Rao Sethumadhavan , R. Rajasekaran . Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach[J]. Frontiers in Biology, 2015 , 10(6) : 508 -519 . DOI: 10.1007/s11515-015-1379-6

Acknowledgements

The authors thank the management of VIT University for providing the facilities and encouragement to carry out this research work.

Compliance with ethics guidelines

B. Senthilkumar, D. Meshachpaul, Rao Sethumadhavan and R. Rajasekaran declare that they have no conflict of interest.
ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.
1
Acharya P, Rajakumara E, Sankaranarayanan R, Rao N M (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol, 341(5): 1271–1281

DOI PMID

2
Ahmad S, Kamal M Z, Sankaranarayanan R, Rao N M (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol, 381(2): 324–340

DOI PMID

3
Ahmed A, Rippmann F, Barnickel G, Gohlke H (2011). A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. J Chem Inf Model, 51(7): 1604–1622

DOI PMID

4
Annenkov G A, Klepikov N N, Martynova L P, Puzanov V A (2004). Wide range of the use of natural lipases and esterases to inhibit Mycobacterium tuberculosis.. Probl Tuberk Bolezn Legk, (6): 52–56 PMID:15315135

5
Bandyopadhyay S, Chakraborty S, Bagchi B (2005). Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J Am Chem Soc, 127(47): 16660–16667

DOI PMID

6
Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E (2000). The Protein Data Bank. Nucleic Acids Res, 28(1): 235–242

DOI PMID

7
Bikadi Z, Demko L, Hazai E (2007). Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys, 461(2): 225–234

DOI PMID

8
Bruins M E, Janssen A E, Boom R M (2001). Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol, 90(2): 155–186

DOI PMID

9
Cavallo L, Kleinjung J, Fraternali F (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res, 31(13): 3364–3366

DOI PMID

10
Chou C C, Rajasekaran M, Chen C (2010). An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking. BMC Bioinformatics, 11(1): 334

DOI PMID

11
Cossio P, Granata D, Laio A, Seno F, Trovato A (2012). A simple and efficient statistical potential for scoring ensembles of protein structures. Sci Rep, 2(14)

DOI

12
Duhovny D, Nussinov R, Wolfson H J (2002). Efficient unbound docking of rigid molecules. In Algorithms in bioinformatics. Springer, pp. 185–200

13
Eggert T, van Pouderoyen G, Dijkstra B W, Jaeger K E (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett, 502(3): 89–92

DOI PMID

14
Feldblum E S, Arkin I T (2014). Strength of a bifurcated H bond. Proc Natl Acad Sci USA, 111(11): 4085–4090

DOI PMID

15
Fersht A R, Bycroft M, Horovitz A, Kellis J T Jr, Matouschek A, Serrano L (1991). Pathway and stability of protein folding. Philos Trans R Soc Lond B Biol Sci, 332(1263): 171–176

DOI PMID

16
Gaillard P, Carrupt P A, Testa B, Boudon A (1994). Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des, 8(2): 83–96

DOI PMID

17
Gasteiger J, Rudolph C, Sadowski J (1990). Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methodol., 3(6): 537–547

DOI

18
Goodenough P W, Jenkins J A (1991). Protein engineering to change thermal stability for food enzymes. Biochem Soc Trans, 19(3): 655–662

DOI PMID

19
Gupta R, Gupta N, Rathi P (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol, 64(6): 763–781

DOI PMID

20
Hasan F, Shah A A, Hameed A (2006). Industrial applications of microbial lipases. Enzyme Microb Technol, 39(2): 235–251

DOI

21
Heinig M, Frishman D (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res, 32(Web Server issue): W500-2

PMID

22
Houde A, Kademi A, Leblanc D (2004). Lipases and their industrial applications: an overview. Appl Biochem Biotechnol, 118(1-3): 155–170

DOI PMID

23
Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998). Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles, 2(3): 185–190

DOI PMID

24
Jaeger K E, Reetz M T (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 16(9): 396–403

DOI PMID

25
Jamroz M, Kolinski A, Kmiecik S (2013). CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res, 41(Web Server issue): W427-31

PMID

26
Ji X L, Liu S Q (2011). Is stoichiometry-driven protein folding getting out of thermodynamic control? J Biomol Struct Dyn, 28(4): 621–623, discussion 669–674

DOI PMID

27
Kamal M Z, Ahmad S, Molugu T R, Vijayalakshmi A, Deshmukh M V, Sankaranarayanan R, Rao N M (2011). In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation. J Mol Biol, 413(3): 726–741

DOI PMID

28
Keating K S, Flores S C, Gerstein M B, Kuhn L A (2009). StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci, 18(2): 359–371

DOI PMID

29
Klibanov A M (1990). Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res, 23(4): 114–120

DOI

30
Klibanov A M (1997). Why are enzymes less active in organic solvents than in water? Trends Biotechnol, 15(3): 97–101

DOI PMID

31
Krüger D M, Ahmed A, Gohlke H (2012). NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res, 40(Web Server issue): W310-6

PMID

32
Kruskal W H (1952). A nonparametric test for the several sample problem. Ann Math Stat, 23(4): 525–540

DOI

33
Kynclova E, Hartig A, Schalkhammer T (1995). Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. J Mol Recognit, 8(1-2): 139–145

DOI PMID

34
Larios A, García H S, Oliart R M, Valerio-Alfaro G (2004). Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl Microbiol Biotechnol, 65(4): 373–376

DOI PMID

35
Linko Y Y, Lämsä M, Wu X, Uosukainen E, Seppälä J, Linko P (1998). Biodegradable products by lipase biocatalysis. J Biotechnol, 66(1): 41–50

DOI PMID

36
Lobanov M Y, Bogatyreva N S, Galzitskaya O V (2008). Radius of gyration as an indicator of protein structure compactness. Mol Biol, 42(4): 623–628

DOI PMID

37
Lou Y C, Wang I, Rajasekaran M, Kao Y F, Ho M R, Hsu S T D, Chou S H, Wu S H, Chen C (2014). Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res, 42(6): 4080–4093

DOI PMID

38
Lou Y C, Wei S Y, Rajasekaran M, Chou C C, Hsu H M, Tai J H, Chen C (2009). NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res, 37(7): 2381–2394

DOI PMID

39
Luo S C, Lou Y C, Rajasekaran M, Chang Y W, Hsiao C D, Chen C (2013). Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem, 288(35): 25551–25561

DOI PMID

40
Ma J, Zhang Z, Wang B, Kong X, Wang Y, Cao S, Feng Y (2006). Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif, 45(1): 22–29

DOI PMID

41
Mahalingam R, Peng H P, Yang A S (2014). Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophys Chem, 192: 10–19

DOI PMID

42
Mahalingam R, Peng H P, Yang A S (2014). Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. J Theor Biol, 343: 154–161

DOI PMID

43
Munoz A, Katerndahl D A (2000). Diagnosis and management of acute pancreatitis. Am Fam Physician, 62(1): 164–174

PMID

44
Noureddini H, Gao X, Philkana R S (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol, 96(7): 769–777

DOI PMID

45
Pace C N, Fu H, Fryar K L, Landua J, Trevino S R, Shirley B A, Hendricks M M, Iimura S, Gajiwala K, Scholtz J M, Grimsley G R (2011). Contribution of hydrophobic interactions to protein stability. J Mol Biol, 408(3): 514–528

DOI PMID

46
Pace C N, Fu H, Lee Fryar K, Landua J, Trevino S R, Schell D, Thurlkill R L, Imura S, Scholtz J M, Gajiwala K, Sevcik J, Urbanikova L, Myers J K, Takano K, Hebert E J, Shirley B A, Grimsley G R (2014). Contribution of hydrogen bonds to protein stability. Protein Sci, 23(5): 652–661

DOI PMID

47
Pace C N, Shirley B A, McNutt M, Gajiwala K (1996). Forces contributing to the conformational stability of proteins. FASEB J, 10(1): 75–83

PMID

48
Pedretti A, Villa L, Vistoli G (2004). VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des, 18(3): 167–173

DOI PMID

49
Porollo A, Meller J (2010). POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res, 38(Web Server issue): W662-6

PMID

50
Rajasekaran M, Abirami S, Chen C (2011). Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PLoS ONE, 6(9): e25801

DOI PMID

51
Rajasekaran M, Chen C (2012). Structural effect of the L16Q, K50E, and R53P mutations on homeodomain of pituitary homeobox protein 2. Int J Biol Macromol, 51(3): 305–313

DOI PMID

52
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H J (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue): W363-7

PMID

53
Sharma R, Chisti Y, Banerjee U C (2001). Production, purification, characterization, and applications of lipases. Biotechnol Adv, 19(8): 627–662

DOI PMID

54
Singh B, Bulusu G, Mitra A (2015). Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. J Phys Chem B, 119(2): 392–409

DOI PMID

55
Srivastava A, Sinha S (2014). Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective. PLoS ONE, 9(8): e102856

DOI PMID

56
Suhre K, Sanejouand Y H (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res, 32(Web Server issue): W610-4

PMID

57
Tian F, Yang C, Wang C, Guo T, Zhou P (2014). Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model, 20(6): 2257

DOI PMID

58
Tina K G, Bhadra R, Srinivasan N (2007). PIC. Nucleic Acids Res, 35(Web Server issue): W473-6

PMID

59
Unsworth L D, van der Oost J, Koutsopoulos S (2007). Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J, 274(16): 4044–4056

DOI PMID

60
van Pouderoyen G, Eggert T, Jaeger K E, Dijkstra B W (2001). The crystal structure of Bacillus subtilis lipase: a minimal a/b hydrolase fold enzyme. J Mol Biol, 309(1): 215–226

DOI PMID

61
Vogt G, Argos P (1997). Protein thermal stability: hydrogen bonds or internal packing? Fold Des, 2(4): S40–S46

DOI PMID

62
Zeikus J G, Vieille C, Savchenko A (1998). Thermozymes: biotechnology and structure-function relationships. Extremophiles, 2(3): 179–183

DOI PMID

Outlines

/