RESEARCH ARTICLE

Pattern analysis of stem cell differentiation during in vitroArabidopsis organogenesis

  • Ying Hua SU 1,2 ,
  • Zhi Juan CHENG 1,2 ,
  • Yu Xiao SU 1,2 ,
  • Xian Sheng ZHANG , 1,2
Expand
  • 1. College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
  • 2. State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China

Received date: 31 Aug 2010

Accepted date: 25 Sep 2010

Published date: 01 Oct 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.

Cite this article

Ying Hua SU , Zhi Juan CHENG , Yu Xiao SU , Xian Sheng ZHANG . Pattern analysis of stem cell differentiation during in vitroArabidopsis organogenesis[J]. Frontiers in Biology, 2010 , 5(5) : 464 -470 . DOI: 10.1007/s11515-010-0820-0

Acknowledgements

This research was supported by grants from the Ministry of Science and Technology of China (No. 2007CB948200), and the National Natural Science Foundation (NNSF) of China (Grant Nos. 90917015 and 30770217).
1
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1): 109–120

2
Birnbaum K D, Sánchez Alvarado A (2008). Slicing across kingdoms: regeneration in plants and animals. Cell, 132(4): 697–710

3
Brawley C, Matunis E (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675): 1331–1334

DOI

4
Cheng Z J, Zhu S S, Gao X Q, Zhang X S (2010). Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep, 29(8): 927–933

DOI

5
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 122(5): 1567–1575

6
Ding Z, Friml J (2010). Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A, 107(26): 12046–12051

DOI

7
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154–156

DOI

8
Fletcher J C, Meyerowitz E M (2000). Cell signaling within the shoot meristem. Curr Opin Plant Biol, 3(1): 23–30

DOI

9
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 449(7165): 1053–1057

DOI

10
Gallois J L, Nora F R, Mizukami Y, Sablowski R (2004). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev, 18(4): 375–380

DOI

11
Gross-Hardt R, Laux T (2003). Stem cell regulation in the shoot meristem. J Cell Sci, 116(Pt 9): 1659–1666

DOI

12
Higashi K, Shiota H, Kamada H (1998). Patterns of expression of the genes for glutamine synthetase isoforms during somatic and zygotic embryogenesis in carrot. Plant Cell Physiol, 39(4): 418–424

13
Jürgens G (2001). Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J, 20(14): 3609–3616

DOI

14
Laux T, Mayer K F X, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122(1): 87–96

15
Li Q Z, Li X G, Bai S N, Lu W L, Zhang X S (2002). Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta, 215(4): 533–540

DOI

16
Long J A, Moan E I, Medford J I, Barton M K (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379(6560): 66–69

DOI

17
Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J (1998). Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 93(7): 1195–1205

18
Morgan T (1901). Regeneration. New York: Macmillan

19
Müller B, Sheen J (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453(7198): 1094–1097

DOI

20
Murashige T, Skoog F (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant, 15: 473–497

DOI

21
Prantl K (1874). Untersuchungen uber die Regeneration des Vegetationspunktes an Agiospermenwurzeln. Arb Bot Inst Wurzburg, 4: 546–562

22
Rieu I, Laux T (2009). Signaling pathways maintaining stem cells at the plant shoot apex. Semin Cell Dev Biol, 20(9): 1083–1088

DOI

23
Sarkar A K, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007). Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature, 446(7137): 811–814

DOI

24
Scheres B (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol, 8(5): 345–354

DOI

25
Schoof H, Lenhard M, Haecker A, Mayer K F X, Jürgens G, Laux T (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100(6): 635–644

26
Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998). C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol, 39(11): 1184–1193

27
Shiota H, Tachikawa K, Watabe K, Kamada H (1999). Successful long-term preservation of abscisic acid-treated and desiccated carrot somatic embryos. Plant Cell Rep, 18: 749–753

DOI

28
Sieburth L E, Meyerowitz E M (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell, 9(3): 355–365

29
Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L, Goldberg R B, Harada J J (2001). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A, 98(20): 11806–11811

DOI

30
Su Y H, Zhao X Y, Liu Y B, Zhang C L, O’Neill S D, Zhang X S (2009). Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J, 59(3): 448–460

DOI

31
Terpstra I, Heidstra R (2009). Stem cells: The root of all cells. Semin Cell Dev Biol, 20(9): 1089–1096

DOI

32
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147

DOI

33
Turnpenny L, Spalluto C M, Perrett R M, O’Shea M, Hanley K P, Cameron I T, Wilson D I, Hanley N A (2006). Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells, 24(2): 212–220

DOI

34
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature, 390(6657): 287–289

DOI

35
Weigel D, Jürgens G (2002). Stem cells that make stems. Nature, 415(6873): 751–754

36
Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006). A molecular framework for plant regeneration. Science, 311(5759): 385–388

DOI

37
Zhao X Y, Liu M S, Li J R, Guan C M, Zhang X S (2005). The wheat TaGI1, involved in photoperiodic flowering, encodes an ArabidopsisGI ortholog. Plant Mol Biol, 58(1): 53–64

DOI

38
Zuo J, Niu Q W, Frugis G, Chua N H (2002). The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 30(3): 349–359

DOI

Outlines

/