Emerging roles of autophagy in metabolism and metabolic disorders
Received date: 05 Dec 2014
Accepted date: 23 Feb 2015
Published date: 06 May 2015
Copyright
The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.
Key words: autophagy; selective autophagy; metabolism; metabolic disease; obesity; diabetes
Altea Rocchi , Congcong He . Emerging roles of autophagy in metabolism and metabolic disorders[J]. Frontiers in Biology, 2015 , 10(2) : 154 -164 . DOI: 10.1007/s11515-015-1354-2
1 |
Axe E L, Walker S A, Manifava M, Chandra P, Roderick H L, Habermann A, Griffiths G, Ktistakis N T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
|
2 |
Baerga R, Zhang Y, Chen P H, Goldman S, Jin S (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy, 5(8): 1118–1130
|
3 |
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
|
4 |
Boyle K B, Randow F (2013). The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol, 16(3): 339–348
|
5 |
Burman C, Ktistakis N T (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett, 584(7): 1302–1312
|
6 |
Campello S, Strappazzon F, Cecconi F (2014). Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta, 1837(4): 451–460
|
7 |
Cebollero E, Reggiori F, Kraft C (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol, 2012: 182834
|
8 |
Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15(3): 344–357
|
9 |
Coupé B, Ishii Y, Dietrich M O, Komatsu M, Horvath T L, Bouret S G (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab, 15(2): 247–255
|
10 |
De Duve C, Wattiaux R (1966). Functions of lysosomes. Annu Rev Physiol, 28(1): 435–492
|
11 |
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab, 8(4): 325–332
|
12 |
Elzinga B M, Nyhan M J, Crowley L C, O’Donovan T R, Cahill M R, McKenna S L (2013). Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol, 88(6): 455–462
|
13 |
Geisler S, Holmström K M, Skujat D, Fiesel F C, Rothfuss O C, Kahle P J, Springer W (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2): 119–131
|
14 |
Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864
|
15 |
Goldman S, Zhang Y, Jin S (2010). Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy, 6(1): 179–181
|
16 |
Gonzalez C D, Lee M S, Marchetti P, Pietropaolo M, Towns R, Vaccaro M I, Watada H, Wiley J W (2011). The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 7(1): 2–11
|
17 |
Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P (2011). Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 7(12): 1415–1423
|
18 |
Guariguata L, Whiting D R, Hambleton I, Beagley J, Linnenkamp U, Shaw J E (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2): 137–149
|
19 |
Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 282(52): 37298–37302
|
20 |
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3): 497–510
|
21 |
He C, Bassik M C, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May H I, Hill J A, Virgin H W, Gilpin C, Xiao G, Bassel-Duby R, Scherer P E, Levine B (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382): 511–515
|
22 |
He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099
|
23 |
Ichimura Y, Waguri S, Sou Y S, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M S, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 51(5): 618–631
|
24 |
Jaber N, Dou Z, Chen J S, Catanzaro J, Jiang Y P, Ballou L M, Selinger E, Ouyang X, Lin R Z, Zhang J, Zong W X (2012). Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA, 109(6): 2003–2008
|
25 |
Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
|
26 |
Jiang S, Heller B, Tagliabracci V S, Zhai L, Irimia J M, DePaoli-Roach A A, Wells C D, Skurat A V, Roach P J (2010). Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem, 285(45): 34960–34971
|
27 |
Jiang S, Wells C D, Roach P J (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun, 413(3): 420–425
|
28 |
Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014). Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci, 10(3): 268–277
|
29 |
Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296
|
30 |
Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003
|
31 |
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295
|
32 |
Jung H S, Chung K W, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen Y H, Kang T M, Yoon K H, Kim J W, Jeong Y T, Han M S, Lee M K, Kim K W, Shin J, Lee M S (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab, 8(4): 318–324
|
33 |
Jung H S, Lee M S (2010). Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci, 1201(1): 79–83
|
34 |
Kageyama S, Sou Y S, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer R J, Lee M S, Yamamoto M, Waguri S, Tanaka K, Komatsu M (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem, 289(36): 24944–24955
|
35 |
Kahn S E, Hull R L, Utzschneider K M (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121): 840–846
|
36 |
Kalender A, Selvaraj A, Kim S Y, Gulati P, Brûlé S, Viollet B, Kemp B E, Bardeesy N, Dennis P, Schlager J J, Marette A, Kozma S C, Thomas G (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11(5): 390–401
|
37 |
Kane L A, Lazarou M, Fogel A I, Li Y, Yamano K, Sarraf S A, Banerjee S, Youle R J (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2): 143–153
|
38 |
Kaushik S, Arias E, Kwon H, Lopez N M, Athonvarangkul D, Sahu S, Schwartz G J, Pessin J E, Singh R (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep, 13(3): 258–265
|
39 |
Kaushik S, Cuervo A M (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8): 407–417
|
40 |
Kaushik S, Rodriguez-Navarro J A, Arias E, Kiffin R, Sahu S, Schwartz G J, Cuervo A M, Singh R (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab, 14(2): 173–183
|
41 |
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell D G, Ritorto M S, Hofmann K, Alessi D R, Knebel A, Trost M, Muqit M M (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J, 460(1): 127–139
|
42 |
Kim K H, Jeong Y T, Oh H, Kim S H, Cho J M, Kim Y N, Kim S S, Kim H, Hur K Y, Kim H K, Ko T, Han J, Kim H L, Kim J, Back S H, Komatsu M, Chen H, Chan D C, Konishi M, Itoh N, Choi C S, Lee M S (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1): 83–92
|
43 |
Kim K H, Lee M S (2014). Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol, 10(6): 322–337
|
44 |
Kirkin V, Lamark T, Sou Y S, Bjørkøy G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4): 505–516
|
45 |
Knaevelsrud H, Simonsen A (2010). Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett, 584(12): 2635–2645
|
46 |
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
|
47 |
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434
|
48 |
Korac J, Schaeffer V, Kovacevic I, Clement A M, Jungblut B, Behl C, Terzic J, Dikic I (2013). Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci, 126(Pt 2): 580–592
|
49 |
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E A, Trempe J F, Saeki Y, Tanaka K, Matsuda N (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162–166
|
50 |
Kraft C, Deplazes A, Sohrmann M, Peter M (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
|
51 |
Kroemer G, Mariño G, Levine B (2010). Autophagy and the integrated stress response. Mol Cell, 40(2): 280–293
|
52 |
Kuma A, Mizushima N (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7): 683–690
|
53 |
Le Guezennec X, Brichkina A, Huang Y F, Kostromina E, Han W, Bulavin D V (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab, 16(1): 68–80
|
54 |
Lee J M, Wagner M, Xiao R, Kim K H, Feng D, Lazar M A, Moore D D (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529): 112–115
|
55 |
Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4): 463–477
|
56 |
Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell, 132(1): 27–42
|
57 |
Lim Y M, Lim H, Hur K Y, Quan W, Lee H Y, Cheon H, Ryu D, Koo S H, Kim H L, Kim J, Komatsu M, Lee M S (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun, 5: 4934
|
58 |
Lira V A, Okutsu M, Zhang M, Greene N P, Laker R C, Breen D S, Hoehn K L, Yan Z (2013). Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J, 27: 4184–4193
|
59 |
Liu H Y, Han J, Cao S Y, Hong T, Zhuo D, Shi J, Liu Z, Cao W (2009). Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem, 284(45): 31484–31492
|
60 |
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden S J, Di Lisi R, Sandri C, Zhao J, Goldberg A L, Schiaffino S, Sandri M (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 6(6): 458–471
|
61 |
Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P (2013). β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab, 15(Suppl 3): 130–136
|
62 |
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009). Autophagy is required to maintain muscle mass. Cell Metab, 10(6): 507–515
|
63 |
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
|
64 |
Mizushima N (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 22(2): 132–139
|
65 |
Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741
|
66 |
Mizushima N, Yoshimori T, Ohsumi Y (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
|
67 |
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
|
68 |
Newgard C B, An J, Bain J R, Muehlbauer M J, Stevens R D, Lien L F, Haqq A M, Shah S H, Arlotto M, Slentz C A, Rochon J, Gallup D, Ilkayeva O, Wenner B R, Yancy W S Jr, Eisenson H, Musante G, Surwit R S, Millington D S, Butler M D, Svetkey L P (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab, 9(4): 311–326
|
69 |
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M, Reichhart J M, Sasakawa C (2011). A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe, 9(5): 376–389
|
70 |
Ossareh-Nazari B, Niño C A, Bengtson M H, Lee J W, Joazeiro C A, Dargemont C (2014). Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol, 204(6): 909–917
|
71 |
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel Y L (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab, 13(6): 655–667
|
72 |
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
|
73 |
Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6): 927–939
|
74 |
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
|
75 |
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan R N, Gilpin C, Levine B (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5): 931–946
|
76 |
Quan W, Kim H K, Moon E Y, Kim S S, Choi C S, Komatsu M, Jeong Y T, Lee M K, Kim K W, Kim M S, Lee M S (2012a). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4): 1817–1826
|
77 |
Quan W, Lim Y M, Lee M S (2012b). Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med, 44(2): 81–88
|
78 |
Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet, 17(24): 3897–3908
|
79 |
Rabinowitz J D, White E (2010). Autophagy and metabolism. Science, 330(6009): 1344–1348
|
80 |
Ravikumar B, Duden R, Rubinsztein D C (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet, 11(9): 1107–1117
|
81 |
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222
|
82 |
Ryter S W, Cloonan S M, Choi A M K (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells, 36(1): 7–16
|
83 |
Santambrogio L, Cuervo A M (2011). Chasing the elusive mammalian microautophagy. Autophagy, 7(6): 652–654
|
84 |
Sengupta A, Molkentin J D, Yutzey K E (2009). FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem, 284(41): 28319–28331
|
85 |
Seok S, Fu T, Choi S E, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper J K (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529): 108–111
|
86 |
Settembre C, De Cegli R, Mansueto G, Saha P K, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch T J, Wollenberg A C, Di Bernardo D, Chan L, Irazoqui J E, Ballabio A (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 15(6): 647–658
|
87 |
Settembre C, Di Malta C, Polito V A, Garcia Arencibia M, Vetrini F, Erdin S, Erdin S U, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein D C, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science, 332(6036): 1429–1433
|
88 |
Shaid S, Brandts C H, Serve H, Dikic I (2013). Ubiquitination and selective autophagy. Cell Death Differ, 20(1): 21–30
|
89 |
Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926
|
90 |
Simonsen A, Birkeland H C, Gillooly D J, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004). Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci, 117(Pt 18): 4239–4251
|
91 |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A M, Czaja M J (2009a). Autophagy regulates lipid metabolism. Nature, 458(7242): 1131–1135
|
92 |
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo A M, Luu Y K, Tang Y, Pessin J E, Schwartz G J, Czaja M J (2009b). Autophagy regulates adipose mass and differentiation in mice. J Clin Invest, 119(11): 3329–3339
|
93 |
Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
|
94 |
Warr M R, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437): 323–327
|
95 |
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell, 30(6): 678–688
|
96 |
Wong E, Bejarano E, Rakshit M, Lee K, Hanson H H, Zaarur N, Phillips G R, Sherman M Y, Cuervo A M (2012). Molecular determinants of selective clearance of protein inclusions by autophagy. Nat Commun, 3: 1240
|
97 |
Yang L, Li P, Fu S, Calay E S, Hotamisligil G S (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 11(6): 467–478
|
98 |
Zhang C, He Y, Okutsu M, Ong L C, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z (2013). Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am J Physiol Endocrinol Metab, 305(4): E530–E539
|
99 |
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA, 106(47): 19860–19865
|
100 |
Zhao J, Brault J J, Schild A, Cao P, Sandri M, Schiaffino S, Lecker S H, Goldberg A L (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab, 6(6): 472–483
|
101 |
Zheng Y T, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell J H (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol, 183(9): 5909–5916
|
102 |
Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
|
103 |
Zhou G, Sebhat I K, Zhang B B (2009). AMPK activators—potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf), 196(1): 175–190
|
/
〈 | 〉 |