REVIEW

Emerging roles of autophagy in metabolism and metabolic disorders

  • Altea Rocchi ,
  • Congcong He
Expand
  • Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Received date: 05 Dec 2014

Accepted date: 23 Feb 2015

Published date: 06 May 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.

Cite this article

Altea Rocchi , Congcong He . Emerging roles of autophagy in metabolism and metabolic disorders[J]. Frontiers in Biology, 2015 , 10(2) : 154 -164 . DOI: 10.1007/s11515-015-1354-2

Acknowledgements

This work was supported by the NIH Pathway to Independence Award R00 DK094980 to C.H.
Altea Rocchi and Congcong He declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Axe E L, Walker S A, Manifava M, Chandra P, Roderick H L, Habermann A, Griffiths G, Ktistakis N T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701

DOI PMID

2
Baerga R, Zhang Y, Chen P H, Goldman S, Jin S (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy, 5(8): 1118–1130

DOI PMID

3
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614

DOI PMID

4
Boyle K B, Randow F (2013). The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol, 16(3): 339–348

DOI PMID

5
Burman C, Ktistakis N T (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett, 584(7): 1302–1312

DOI PMID

6
Campello S, Strappazzon F, Cecconi F (2014). Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta, 1837(4): 451–460

DOI PMID

7
Cebollero E, Reggiori F, Kraft C (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol, 2012: 182834

PMID

8
Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15(3): 344–357

DOI PMID

9
Coupé B, Ishii Y, Dietrich M O, Komatsu M, Horvath T L, Bouret S G (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab, 15(2): 247–255

DOI PMID

10
De Duve C, Wattiaux R (1966). Functions of lysosomes. Annu Rev Physiol, 28(1): 435–492

DOI PMID

11
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab, 8(4): 325–332

DOI PMID

12
Elzinga B M, Nyhan M J, Crowley L C, O’Donovan T R, Cahill M R, McKenna S L (2013). Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol, 88(6): 455–462

DOI PMID

13
Geisler S, Holmström K M, Skujat D, Fiesel F C, Rothfuss O C, Kahle P J, Springer W (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2): 119–131

DOI PMID

14
Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864

DOI PMID

15
Goldman S, Zhang Y, Jin S (2010). Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy, 6(1): 179–181

DOI PMID

16
Gonzalez C D, Lee M S, Marchetti P, Pietropaolo M, Towns R, Vaccaro M I, Watada H, Wiley J W (2011). The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 7(1): 2–11

DOI PMID

17
Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P (2011). Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 7(12): 1415–1423

DOI PMID

18
Guariguata L, Whiting D R, Hambleton I, Beagley J, Linnenkamp U, Shaw J E (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2): 137–149

DOI PMID

19
Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 282(52): 37298–37302

DOI PMID

20
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3): 497–510

DOI PMID

21
He C, Bassik M C, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May H I, Hill J A, Virgin H W, Gilpin C, Xiao G, Bassel-Duby R, Scherer P E, Levine B (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382): 511–515

DOI PMID

22
He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099

DOI PMID

23
Ichimura Y, Waguri S, Sou Y S, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M S, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 51(5): 618–631

DOI PMID

24
Jaber N, Dou Z, Chen J S, Catanzaro J, Jiang Y P, Ballou L M, Selinger E, Ouyang X, Lin R Z, Zhang J, Zong W X (2012). Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA, 109(6): 2003–2008

DOI PMID

25
Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72

DOI PMID

26
Jiang S, Heller B, Tagliabracci V S, Zhai L, Irimia J M, DePaoli-Roach A A, Wells C D, Skurat A V, Roach P J (2010). Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem, 285(45): 34960–34971

DOI PMID

27
Jiang S, Wells C D, Roach P J (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun, 413(3): 420–425

DOI PMID

28
Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014). Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci, 10(3): 268–277

DOI PMID

29
Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296

DOI PMID

30
Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003

DOI PMID

31
Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295

DOI PMID

32
Jung H S, Chung K W, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen Y H, Kang T M, Yoon K H, Kim J W, Jeong Y T, Han M S, Lee M K, Kim K W, Shin J, Lee M S (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab, 8(4): 318–324

DOI PMID

33
Jung H S, Lee M S (2010). Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci, 1201(1): 79–83

DOI PMID

34
Kageyama S, Sou Y S, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer R J, Lee M S, Yamamoto M, Waguri S, Tanaka K, Komatsu M (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem, 289(36): 24944–24955

DOI PMID

35
Kahn S E, Hull R L, Utzschneider K M (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121): 840–846

DOI PMID

36
Kalender A, Selvaraj A, Kim S Y, Gulati P, Brûlé S, Viollet B, Kemp B E, Bardeesy N, Dennis P, Schlager J J, Marette A, Kozma S C, Thomas G (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11(5): 390–401

DOI PMID

37
Kane L A, Lazarou M, Fogel A I, Li Y, Yamano K, Sarraf S A, Banerjee S, Youle R J (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2): 143–153

PMID

38
Kaushik S, Arias E, Kwon H, Lopez N M, Athonvarangkul D, Sahu S, Schwartz G J, Pessin J E, Singh R (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep, 13(3): 258–265

DOI PMID

39
Kaushik S, Cuervo A M (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8): 407–417

DOI PMID

40
Kaushik S, Rodriguez-Navarro J A, Arias E, Kiffin R, Sahu S, Schwartz G J, Cuervo A M, Singh R (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab, 14(2): 173–183

DOI PMID

41
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell D G, Ritorto M S, Hofmann K, Alessi D R, Knebel A, Trost M, Muqit M M (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J, 460(1): 127–139

DOI PMID

42
Kim K H, Jeong Y T, Oh H, Kim S H, Cho J M, Kim Y N, Kim S S, Kim H, Hur K Y, Kim H K, Ko T, Han J, Kim H L, Kim J, Back S H, Komatsu M, Chen H, Chan D C, Konishi M, Itoh N, Choi C S, Lee M S (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1): 83–92

DOI PMID

43
Kim K H, Lee M S (2014). Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol, 10(6): 322–337

DOI PMID

44
Kirkin V, Lamark T, Sou Y S, Bjørkøy G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4): 505–516

PMID

45
Knaevelsrud H, Simonsen A (2010). Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett, 584(12): 2635–2645

DOI PMID

46
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223

PMID

47
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434

DOI PMID

48
Korac J, Schaeffer V, Kovacevic I, Clement A M, Jungblut B, Behl C, Terzic J, Dikic I (2013). Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci, 126(Pt 2): 580–592

DOI PMID

49
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E A, Trempe J F, Saeki Y, Tanaka K, Matsuda N (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162–166

PMID

50
Kraft C, Deplazes A, Sohrmann M, Peter M (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610

DOI PMID

51
Kroemer G, Mariño G, Levine B (2010). Autophagy and the integrated stress response. Mol Cell, 40(2): 280–293

DOI PMID

52
Kuma A, Mizushima N (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7): 683–690

DOI PMID

53
Le Guezennec X, Brichkina A, Huang Y F, Kostromina E, Han W, Bulavin D V (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab, 16(1): 68–80

DOI PMID

54
Lee J M, Wagner M, Xiao R, Kim K H, Feng D, Lazar M A, Moore D D (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529): 112–115

PMID

55
Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4): 463–477

DOI PMID

56
Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell, 132(1): 27–42

DOI PMID

57
Lim Y M, Lim H, Hur K Y, Quan W, Lee H Y, Cheon H, Ryu D, Koo S H, Kim H L, Kim J, Komatsu M, Lee M S (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun, 5: 4934

DOI PMID

58
Lira V A, Okutsu M, Zhang M, Greene N P, Laker R C, Breen D S, Hoehn K L, Yan Z (2013). Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J, 27: 4184–4193

59
Liu H Y, Han J, Cao S Y, Hong T, Zhuo D, Shi J, Liu Z, Cao W (2009). Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem, 284(45): 31484–31492

DOI PMID

60
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden S J, Di Lisi R, Sandri C, Zhao J, Goldberg A L, Schiaffino S, Sandri M (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 6(6): 458–471

DOI PMID

61
Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P (2013). β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab, 15(Suppl 3): 130–136

DOI PMID

62
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009). Autophagy is required to maintain muscle mass. Cell Metab, 10(6): 507–515

DOI PMID

63
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396

DOI PMID

64
Mizushima N (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 22(2): 132–139

DOI PMID

65
Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741

DOI PMID

66
Mizushima N, Yoshimori T, Ohsumi Y (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132

DOI PMID

67
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803

PMID

68
Newgard C B, An J, Bain J R, Muehlbauer M J, Stevens R D, Lien L F, Haqq A M, Shah S H, Arlotto M, Slentz C A, Rochon J, Gallup D, Ilkayeva O, Wenner B R, Yancy W S Jr, Eisenson H, Musante G, Surwit R S, Millington D S, Butler M D, Svetkey L P (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab, 9(4): 311–326

DOI PMID

69
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M, Reichhart J M, Sasakawa C (2011). A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe, 9(5): 376–389

DOI PMID

70
Ossareh-Nazari B, Niño C A, Bengtson M H, Lee J W, Joazeiro C A, Dargemont C (2014). Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol, 204(6): 909–917

DOI PMID

71
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel Y L (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab, 13(6): 655–667

DOI PMID

72
Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145

DOI PMID

73
Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6): 927–939

DOI PMID

74
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325

DOI PMID

75
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan R N, Gilpin C, Levine B (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5): 931–946

DOI PMID

76
Quan W, Kim H K, Moon E Y, Kim S S, Choi C S, Komatsu M, Jeong Y T, Lee M K, Kim K W, Kim M S, Lee M S (2012a). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4): 1817–1826

DOI PMID

77
Quan W, Lim Y M, Lee M S (2012b). Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med, 44(2): 81–88

DOI PMID

78
Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet, 17(24): 3897–3908

DOI PMID

79
Rabinowitz J D, White E (2010). Autophagy and metabolism. Science, 330(6009): 1344–1348

DOI PMID

80
Ravikumar B, Duden R, Rubinsztein D C (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet, 11(9): 1107–1117

DOI PMID

81
Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222

DOI PMID

82
Ryter S W, Cloonan S M, Choi A M K (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells, 36(1): 7–16

DOI PMID

83
Santambrogio L, Cuervo A M (2011). Chasing the elusive mammalian microautophagy. Autophagy, 7(6): 652–654

DOI PMID

84
Sengupta A, Molkentin J D, Yutzey K E (2009). FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem, 284(41): 28319–28331

DOI PMID

85
Seok S, Fu T, Choi S E, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper J K (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529): 108–111

PMID

86
Settembre C, De Cegli R, Mansueto G, Saha P K, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch T J, Wollenberg A C, Di Bernardo D, Chan L, Irazoqui J E, Ballabio A (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 15(6): 647–658

DOI PMID

87
Settembre C, Di Malta C, Polito V A, Garcia Arencibia M, Vetrini F, Erdin S, Erdin S U, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein D C, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science, 332(6036): 1429–1433

DOI PMID

88
Shaid S, Brandts C H, Serve H, Dikic I (2013). Ubiquitination and selective autophagy. Cell Death Differ, 20(1): 21–30

DOI PMID

89
Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926

DOI PMID

90
Simonsen A, Birkeland H C, Gillooly D J, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004). Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci, 117(Pt 18): 4239–4251

DOI PMID

91
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A M, Czaja M J (2009a). Autophagy regulates lipid metabolism. Nature, 458(7242): 1131–1135

DOI PMID

92
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo A M, Luu Y K, Tang Y, Pessin J E, Schwartz G J, Czaja M J (2009b). Autophagy regulates adipose mass and differentiation in mice. J Clin Invest, 119(11): 3329–3339

PMID

93
Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218

DOI PMID

94
Warr M R, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437): 323–327

DOI PMID

95
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell, 30(6): 678–688

DOI PMID

96
Wong E, Bejarano E, Rakshit M, Lee K, Hanson H H, Zaarur N, Phillips G R, Sherman M Y, Cuervo A M (2012). Molecular determinants of selective clearance of protein inclusions by autophagy. Nat Commun, 3: 1240

DOI PMID

97
Yang L, Li P, Fu S, Calay E S, Hotamisligil G S (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 11(6): 467–478

DOI PMID

98
Zhang C, He Y, Okutsu M, Ong L C, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z (2013). Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am J Physiol Endocrinol Metab, 305(4): E530–E539

DOI PMID

99
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA, 106(47): 19860–19865

DOI PMID

100
Zhao J, Brault J J, Schild A, Cao P, Sandri M, Schiaffino S, Lecker S H, Goldberg A L (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab, 6(6): 472–483

DOI PMID

101
Zheng Y T, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell J H (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol, 183(9): 5909–5916

DOI PMID

102
Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476

DOI PMID

103
Zhou G, Sebhat I K, Zhang B B (2009). AMPK activators—potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf), 196(1): 175–190

DOI PMID

Outlines

/