Influence of the SNPs on the structural stability of CBS protein: Insight from molecular dynamics simulations
Received date: 07 Apr 2014
Accepted date: 03 Jun 2014
Published date: 13 Jan 2015
Copyright
Cystathionine β-synthase is an essential enzyme of the trans-sulfuration pathway that condenses serine with homocysteine to form cystathionine. Missense mutations in CBS are the major cause of inherited homocystinuria, and the detailed effect of disease associated amino acid substitutions on the structure and stability of human CBS is yet unknown. Here, we apply a unique approach in combining in silico tools and molecular dynamics simulation to provide structural and functional insight into the effect of SNP on the stability and activity of mutant CBS. In addition, principal component analysis and free energy landscape were used to predict the collective motions, thermodynamic stabilities and essential subspace relevant to CBS function. The obtained results indicate that C109R, E176K and D376N mutations have the diverse effect on dynamic behavior of CBS protein. We found that highly conserved D376N mutation, which is present in the active pocket, affects the protein folding mechanism. Our strategy may provide a way in near future to understand and study effects of functional nsSNPs and their role in causing homocystinuria.
Key words: CBS; in silico; molecular dynamics simulation; SNPs
C. GEORGE PRIYA DOSS , B. RAJITH , R. MAGESH , A. ASHISH KUMAR . Influence of the SNPs on the structural stability of CBS protein: Insight from molecular dynamics simulations[J]. Frontiers in Biology, 2014 , 9(6) : 504 -518 . DOI: 10.1007/s11515-014-1320-4
1 |
Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S, Sunyaev S R (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4): 248–249
|
2 |
Afman L A, Lievers K J A, Kluijtmans L A J (2003). Gene-gene interaction between the cystathionine b-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C>T polymorphism on homocysteine levels and risk for neural tube defects. Mol Genet Metab, 78(3): 211–215
|
3 |
Aly T A, Eller E, Ide A, Gowan K, Babu S R, Erlich H A, Rewers M J, Eisenbarth G S, Fain P R (2006). Multi-SNP analysis of MHC region: remarkable conservation of HLA-A1–B8-DR3 haplotype. Diabetes, 55(5): 1265–1269
|
4 |
Amadei A, Linssen A B M, Berendsen H J C (1993). Essential dynamics of proteins. Proteins, 17(4): 412–425
|
5 |
Amberger J, Bocchini C A, Scott A F, Hamosh A (2009). Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res, 37(Database): D793–D796
|
6 |
Amos B, Rolf A (1996). The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 24(1): 21–25
|
7 |
Beer H D, Wohlfahrt G, McCarthy J E, Schomburg D, Schmid R D (1996). Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng, 9(6): 507–517
|
8 |
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser A Stat Soc, 57: 289–300
|
9 |
Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E (2000). The protein data bank. Nucleic Acids Res, 28(1): 235–242
|
10 |
Boyles A L, Billups A V, Deak K L, Siegel D G, Mehltretter L, Slifer S H, Bassuk A G, Kessler J A, Reed M C, Nijhout H F, George T M, Enterline D S, Gilbert J R, Speer M C (2006). NTD Collaborative Group. Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect, 114(10): 1547–1552
|
11 |
Boyles A L, Wilcox A J, Taylor J A, Meyer K, Fredriksen A, Ueland P M, Drevon C A, Vollset S E, Lie R T (2008). Folate and one-carbon metabolism gene polymorphisms and their associations with oral facial clefts. Am J Med Genet A, 146A(4): 440–449
|
12 |
Capriotti E, Fariselli P, Rossi I, Casadio R (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 2(Suppl 2): S6
|
13 |
Chan P A, Duraisamy S, Miller P J, Newell J A, McBride C, Bond J P, Raevaara T, Ollila S, Nyström M, Grimm A J, Christodoulou J, Oetting W S, Greenblatt M S (2007). Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat, 28(7): 683–693
|
14 |
Cheung V G, Nayak R R, Wang I X, Elwyn S, Cousins S M, Morley M, Spielman R S (2010). Polymorphic Cis- and Trans-Regulation of Human Gene Expression. PLoS Biol, 8(9): e1000480
|
15 |
Chun S, Fay J C (2009). Identification of deleterious mutations within three human genomes. Genome Res, 19(9): 1553–1561
|
16 |
Doniger S W, Kim H S, Swain D, Corcuera D, Williams M, Yang S P, Fay J C (2008). Catalog of neutral and deleterious polymorphism in yeast. PLoS Genet, 4(8): e1000183
|
17 |
Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G (1995). A smooth particle meshes Ewald method. J Chem Phys, 103(19): 8577–8593
|
18 |
Fan B J, Chen T, Grosskreutz C, Pasquale L, Rhee D, DelBono E, Haines J L, Wiggs J L (2008). Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Mol Vis, 14: 2484–2491
|
19 |
Gaustadnes M, Wilcken B, Oliveriusova J, McGill J, Fletcher J, Kraus J P, Wilcken D E (2002). The molecular basis of cystathionine beta-synthase deficiency in Australian patients: genotype-phenotype correlations and response to treatment. Hum Mutat, 20(2): 117–126
|
20 |
George Priya Doss C (2012). In Silico Profiling of deleterious Amino Acid Substitutions of Potential Pathological Importance in Hemophilia A and Hemophilia B. BMC J Biomed Sci, 19: 30
|
21 |
George Priya Doss C, Chakraborty C, Syed Haneef S A, NagaSundaram N, Chen, Zhu H (2014). Evolution and structure-based computational design to reveal the impact of deleterious missense mutations in type 2 maturity-onset diabetes of the young. Theranostics, 4: 366–385
|
22 |
Hao D C, Feng Y, Xiao R, Xiao P G (2011). Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: the first comparison of six prediction methods. Pharmacol Rep, 63(4): 924–934
|
23 |
Hegger R, Altis A, Nguyen P H, Stock G (2007). How complex is the dynamics of peptide folding? Phys Rev Lett, 98(2): 028102
|
24 |
Hess B, Kutzner D, Spoel D (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput, 4(3): 435–447
|
25 |
Hicks S, Wheeler D A, Plon S E, Kimmel M (2011). Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat, 32(6): 661–668
|
26 |
Hnízda A, Majtan T, Liu L, Pey A L, Carpenter J F, Kodíček M, Kožich V, Kraus J P (2012). Conformational properties of nine purified cystathionine β-synthase mutants. Biochemistry, 51(23): 4755–4763
|
27 |
Janosík M, Oliveriusová J, Janosíková B, Sokolová J, Kraus E, Kraus J P, Kozich V (2001). Impaired heme binding and aggregation of mutant cystathionine betasynthase subunits in homocystinuria. Am J Hum Genet, 51(6): 1506–1513
|
28 |
Jolliffe I T (2002). Principal Component Analysis. New York: Springer
|
29 |
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L (1983). Comparison of simple potential functions for simulating liquid water. J Chem Phys, 79(2): 926
|
30 |
Katsushima F, Oliveriusova J, Sakamoto O, Ohura T, Kondo Y, Iinuma K, Kraus E, Stouracova R, Kraus J P (2006). Expression study of mutant cystathionine beta-synthase found in Japanese patients with homocystinuria. Mol Genet Metab, 87(4): 323–328
|
31 |
Khan S, Vihinen M (2010). Performance of protein stability predictors. Hum Mutat, 31(6): 675–678
|
32 |
Kim C E, Gallagher P M, Guttormsen A B, Refsum H, Ueland P M, Ose L, Folling I, Whitehead A S, Tsai M Y, Kruger W (1997). Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine b synthase mutation in homocystinuria. Hum Mol Genet, 6(13): 2213–2221
|
33 |
Kraus J P, Janosík M, Kozich V, Mandell R, Shih V, Sperandeo M P, Sebastio G, de Franchis R, Andria G, Kluijtmans L A, Blom H, Boers G H, Gordon R B, Kamoun P, Tsai M Y, Kruger W D, Koch H G, Ohura T, Gaustadnes M(1999). Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat, 13: 362–375
|
34 |
Kruger W D, Wang L, Jhee K H, Singh R H, Elsas L J2nd (2003). Cystathionine beta-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat, 22(6): 434–441
|
35 |
Lee P H, Shatkay H (2008). F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res, 36(Database): D820–D824
|
36 |
Lee P H, Shatkay H (2009). An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics, 25(8): 1048–1055
|
37 |
Lino Cardenas C L, Renault N, Farce A, Cauffiez C, Allorge D, Lo-Guidice J M, Lhermitte M, Chavatte P, Broly F, Chevalier D (2011). Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene, 487(1): 10–20
|
38 |
Macintyre G, Bailey J, Haviv I, Kowalczyk A (2010). is-rSNP: a novel technique for in silico regulatory SNP detection. Bioinformatics, 26(18): i524–i530
|
39 |
Magesh R, George Priya Doss C (2012). Computational methods to work as first-pass filter in deleterious SNP analysis of alkaptonuria. ScientificWorldJournal, 2012: 738423
|
40 |
Martinez CA, Northrup H, Lin J I, Morrison A C, Fletcher J M, Tyerman G H, Au K S (2009). Genetic association study of putative functional single nucleotide polymorphisms of genes in folate metabolism and spina bifida. Am J Obstet Gynecol201: 394e1–11
|
41 |
Meier M, Janosik M, Kery V, Kraus J P, Burkhard P (2001). Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J, 20(15): 3910–3916
|
42 |
Meier M, Oliveriusova J, Kraus J P, Burkhard P (2003). Structural insights into mutations of cystathionine beta-synthase. Biochim Biophys Acta, 1647(1–2): 206–213
|
43 |
Metayer C, Scélo G, Chokkalingam A P, Barcellos L F, Aldrich M C, Chang J S, Guha N, Urayama K Y, Hansen H M, Block G, Kiley V, Wiencke J K, Wiemels J L, Buffler P A (2011). Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control, 22(9): 1243–1258
|
44 |
Mudd S H, Levy H, Kraus J P (2001). Disorders in transsulfuration. In: The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, NY, pp. 2007–2056
|
45 |
Ng P C, Henikoff S (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814
|
46 |
Paré G, Chasman D I, Parker A N, Zee R R, Mälarstig A, Seedorf U, Collins R, Watkins H, Hamsten A, Miletich J P, Ridker P M (2009). Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women's Genome Health Study. Circ Cardiovasc Genet, 2(2): 142–150
|
47 |
Rabbani B, Mahdieh N, Haghi Ashtiani M T, Setoodeh A, Rabbani A (2012). In silico structural, functional and pathogenicity evaluation of a novel mutation: an overview of HSD3B2 gene mutations. Gene, 503(2): 215–221
|
48 |
Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mrnas with shortened 39 untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647
|
49 |
Sandelin A, Alkema W, Engström P, Wasserman W W, Lenhard B (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res, 32(90001): D91–D94
|
50 |
Schwarz J M, Rödelsperger C, Schuelke M, Seelow D (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods, 7(8): 575–576
|
51 |
Sherry S T, Ward M, Sirotkin K (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1): 308–311
|
52 |
Singh L R, Chen X, Kozich V, Kruger W D (2007). Chemical chaperone rescue of mutant human cystathionine beta-synthase. Mol Genet Metab, 91(4): 335–342
|
53 |
Steck P A, Pershouse M A, Jasser S A, Yung W K, Lin H, Ligon A H, Langford L A, Baumgard M L, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng D H, Tavtigian S V (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet, 15(4): 356–362
|
54 |
Steinmaus C, Yuan Y, Kalman D, Rey O A, Skibola C F, Dauphine D, Basu A, Porter K E, Hubbard A, Bates M N, Smith M T, Smith A H (2010). Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina. Toxicol Appl Pharmacol, 247(2): 138–145
|
55 |
Thusberg J, Olatubosun A, Vihinen M (2011). Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat, 32(4): 358–368
|
56 |
Thusberg J, Vihinen M (2009). Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat, 30(5): 703–714
|
57 |
Tilley M M, Northrup H, Au K S (2012). Genetic studies of the cystathionine beta-synthase gene and myelomeningocele. Birth Defects Res A Clin Mol Teratol, 94(1): 52–56
|
58 |
van Aalten D M, Amadei A, Linssen A B, Eijsink V G, Vriend G, Berendsen H J (1995). The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulation in vacuum and water. Proteins, 22(1): 45–54
|
59 |
Wang G, Guo X, Floros J (2005). Differences in the translation efficiency and mRNA stability mediated by 59-UTR splice variants of human SP-A1 and SPA2 genes. AJP- Lung Physiol, 289: L497–L508
|
60 |
Wei Q, Wang L, Wang Q, Kruger W D, Dunbrack R L (2010). Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins, 78: 2058–2074
|
61 |
Wernimont S M, Clark A G, Stover P J, Wells M T, Litonjua A A, Weiss S T, Gaziano J M, Tucker K L, Baccarelli A, Schwartz J, Bollati V, Cassano P A (2011). Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study. BMC Med Genet, 12(1): 150
|
/
〈 | 〉 |