RESEARCH ARTICLE

Functional and structural characterization of missense mutations in PAX6 gene

  • S. Udhaya Kumar ,
  • N. Priyanka ,
  • P. Sneha ,
  • C. George Priya Doss
Expand
  • Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India

Received date: 20 Oct 2014

Accepted date: 28 Dec 2014

Published date: 14 Aug 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The PAX6 gene belongs to the Paired box (PAX) family of transcription factors that is tissue specific and required for the differentiation and proliferation of cells in embryonic development. PAX6 regulates the pattern formation in early developmental stages. This function of PAX6 protein enables the successful completion of neurogenesis and oculogenesis in most animals such as mice, Drosophila and some other model organisms including humans. A variation in the sequence of PAX6 gene may alter the function and structure of the protein. Such changes can produce adverse effects on functioning of the PAX6 protein which were clinically observed to occur in a broad range of ocular defects such as aniridia in humans. We employed in silico prediction methods such as SIFT, PolyPhen 2; I mutant 3.0, SNAP, SNPs&GO, and PHD-SNP to screen the pathogenic missense mutation in PAX6 and DNA binding sites by BindN and BindN+ . Furthermore, we employed KD4V server to examine the structural and functional modifications that occur in the PAX6 protein as a result of mutation. Based on the results obtained from the in silico prediction methods, we carried out modeling analysis for V53L, I56T, G64V, and I87R to visualize the impact of mutation in structural context.

Cite this article

S. Udhaya Kumar , N. Priyanka , P. Sneha , C. George Priya Doss . Functional and structural characterization of missense mutations in PAX6 gene[J]. Frontiers in Biology, 2015 , 10(4) : 377 -385 . DOI: 10.1007/s11515-015-1346-2

1
Acharya V, Nagarajaram H A (2012). Hansa: an automated method for discriminating disease and neutral human nsSNPs. Hum Mutat, 33(2): 332–337

DOI PMID

2
Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S, Sunyaev S R (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4): 248–249

DOI PMID

3
Azuma N, Yamaguchi Y, Handa H, Tadokoro K, Asaka A, Kawase E, Yamada M (2003). Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am J Hum Genet, 72(6): 1565–1570

DOI PMID

4
Bromberg Y, Rost B (2007). SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res, 35(11): 3823–3835

DOI PMID

5
Bromberg Y, Yachdav G, Rost B (2008). SNAP predicts effect of mutations on protein function. Bioinformatics, 24(20): 2397–2398

DOI PMID

6
George Priya Doss C, Rajith B, Chakraborty C (2013). Predicting the impact of deleterious mutations in the protein kinase domain of FGFR2 in the context of function, structure, and pathogenesis—a bioinformatics approach. Appl Biochem Biotechnol, 170(8): 1853–1870

DOI PMID

7
Calabrese R, Capriotti E, Fariselli P, Martelli P L, Casadio R (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat, 30(8): 1237–1244

DOI PMID

8
Capriotti E, Calabrese R, Casadio R (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22): 2729–2734

DOI PMID

9
Capriotti E, Fariselli P, Rossi I, Casadio R (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 9(2 Suppl 2): S6

DOI PMID

10
Davis L K, Meyer K J, Rudd D S, Librant A L, Epping E A, Sheffield V C, Wassink T H (2008). Pax6 3′ deletion results in aniridia, autism and mental retardation. Hum Genet, 123(4): 371–378

DOI PMID

11
George Priya Doss C, Rajith B, Garwasis N, Mathew P R, Raju A S, Apoorva K, William D, Sadhana N R, Himani T, Dike I P (2012). Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis. Applied & Translational Genomics., 1: 37–43

DOI

12
Grønskov K, Rosenberg T, Sand A, Brøndum-Nielsen K (1999). Mutational analysis of PAX6: 16 novel mutations including 5 missense mutations with a mild aniridia phenotype. Eur J Hum Genet, 7(3): 274–286

DOI PMID

13
Halder G, Callaerts P, Gehring W J (1995). Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science, 267(5205): 1788–1792

DOI PMID

14
Hanson I, Churchill A, Love J, Axton R, Moore T, Clarke M, Meire F, van Heyningen V (1999). Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations. Hum Mol Genet, 8(2): 165–172

DOI PMID

15
Hanson I M, Fletcher J M, Jordan T, Brown A, Taylor D, Adams R J, Punnett H H, van Heyningen V (1994). Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet, 6(2): 168–173

DOI PMID

16
Hill R E, Favor J, Hogan B L, Ton C C, Saunders G F, Hanson I M, Prosser J, Jordan T, Hastie N D, van Heyningen V (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 354(6354): 522–525

DOI PMID

17
Kaplan W, Littlejohn T G (2001). Swiss-PDB Viewer (Deep View). Brief Bioinform, 2(2): 195–197

DOI PMID

18
Lill M A, Danielson M L (2011). Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des, 25(1): 13–19

DOI PMID

19
Luu TD, Rusu A, Walter V, Linard B, Poidevin L, Ripp R, Moulinier L, Muller J, Raffelsberger W, Wicker N, Lecompte O, Thompson JD, Poch O, Nguyen H (2012). KD4v: comprehensible knowledge discovery system for missense variant. Nucl Acids Res, W71–W75

20
Matsuo O Y N. Noji S, Ohuchi H, Koyama E, Myokai F, Matsuo N, Taniguchi S, Doi H, Iseki S, Ninomiya Y, Fujiwara M,Watanabe T , Eto K (1993). A mutation in the pax6 gene in rat small eye is associated with impaired migration of mid-brain crest cells. Nat Genet, 3: 299–304

DOI PMID

21
Maulbecker C C, Gruss P (1993). The oncogenic potential of Pax genes. EMBO J, 12(6): 2361–2367

PMID

22
McCulley T J, Mayer K, Dahr S S, Simpson J, Holland E J (2005). Aniridia and optic nerve hypoplasia. Eye (Lond), 19(7): 762–764

DOI PMID

23
Mi H, Guo N, Kejariwal A, Thomas P D (2007). PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res, 35(Database issue): D247–D252

DOI PMID

24
Mishra R, Gorlov I P, Chao L Y, Singh S, Saunders G F (2002). PAX6, paired domain influences sequence recognition by the homeodomain. J Biol Chem, 277(51): 49488–49494

DOI PMID

25
Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814

DOI PMID

26
Nishikawa K, Ishino S, Takenaka H, Norioka N, Hirai T, Yao T, Seto Y (1994). Constructing a protein mutant database. Protein Eng, 7(5): 733

DOI PMID

27
Osumi N, Hirota A, Ohuchi H, Nakafuku M, Iimura T, Kuratani S, Fujiwara M, Noji S, Eto K (1997). Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development, 124(15): 2961–2972

PMID

28
Puk O, Yan X, Sabrautzki S, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Graw J (2013). Novel small-eye allele in paired box gene 6 (Pax6) is caused by a point mutation in intron 7 and creates a new exon. Mol Vis, 19: 877–884

PMID

29
Sherry S T, Ward M, Sirotkin K (1999). dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res, 9(8): 677–679

PMID

30
Stromo G D ( 2000). DNA binding sites: Representation and discovery. Bioinformatics, 16(1): 16–23

31
The UniProt Consortium (2008). The Universal Protein Resource (UniProt). Nucleic Acids Res, 36: D190–D195

32
Tzoulaki I, White I M, Hanson I M (2005). PAX6 mutations: genotype-phenotype correlations. BMC Genet, 6(1): 27

DOI PMID

33
van Heyningen V, Williamson K A (2002). PAX6 in sensory development. Hum Mol Genet, 11(10): 1161–1167

DOI PMID

34
Wang L, Brown S J(2006). Bind N: A web based tool for efficient prediction of DNA and RNA binding site in amino acid sequences. Nucleic Acids Res, 34: W243–248

35
Wang L, Huang C, Yang MQ, Yang JY ( 2010). BindN+ for accurate prediction of DNA and RNA-binding residue from protein sequence features. BMC Syst Biol, 4: S3

36
Wawersik S, Maas R L (2000). Vertebrate eye development as modeled in Drosophila. Hum Mol Genet, 9(6): 917–925

DOI PMID

37
Wawrocka A, Sikora A, Kuszel L, Krawczynski M R (2013). 11p13 deletions can be more frequent than the PAX6 gene point mutations in Polish patients with aniridia. J Appl Genet, 54(3): 345–351

DOI PMID

Outlines

/